Cargando…
Author Correction: Prediction of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xAI model: efficient development of auditable risk prediction models via a fine-tuning approach
Autores principales: | Chung, Joowon, Kim, Doyun, Choi, Jongmun, Yune, Sehyo, Song, Kyoung Doo, Kim, Seonkyoung, Chua, Michelle, Succi, Marc D., Conklin, John, Longo, Maria G. Figueiro, Ackman, Jeanne B., Petranovic, Milena, Lev, Michael H., Do, Synho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015513/ https://www.ncbi.nlm.nih.gov/pubmed/36922618 http://dx.doi.org/10.1038/s41598-023-31333-0 |
Ejemplares similares
-
Prediction of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xAI model: efficient development of auditable risk prediction models via a fine-tuning approach
por: Chung, Joowon, et al.
Publicado: (2022) -
Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model
por: Kim, Doyun, et al.
Publicado: (2022) -
MarkIt: A Collaborative Artificial Intelligence Annotation Platform Leveraging Blockchain For Medical Imaging Research
por: Witowski, Jan, et al.
Publicado: (2021) -
Hands-On Explainable AI (XAI) with Python
por: Rothman, Denis
Publicado: (2020) -
Beyond Human Perception: Sexual Dimorphism in Hand and Wrist Radiographs Is Discernible by a Deep Learning Model
por: Yune, Sehyo, et al.
Publicado: (2018)