Cargando…

An immune-related signature for optimizing prognosis prediction and treatment decision of hepatocellular carcinoma

BACKGROUND: An immune-related gene signature (IGS) was established for discriminating prognosis, predicting benefit of immunotherapy, and exploring therapeutic options in hepatocellular carcinoma (HCC). METHODS: Based on Immune-related hub genes and The Cancer Genome Atlas (TCGA) LIHC dataset (n = 3...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Ninghua, Jiang, Wei, Wang, Yilang, Song, Qianqian, Cao, Xiaolei, Zheng, Wenjie, Zhang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015788/
https://www.ncbi.nlm.nih.gov/pubmed/36918943
http://dx.doi.org/10.1186/s40001-023-01091-w
Descripción
Sumario:BACKGROUND: An immune-related gene signature (IGS) was established for discriminating prognosis, predicting benefit of immunotherapy, and exploring therapeutic options in hepatocellular carcinoma (HCC). METHODS: Based on Immune-related hub genes and The Cancer Genome Atlas (TCGA) LIHC dataset (n = 363), an immune-related gene signature (IGS) was established by least absolute shrinkage and selection operator (LASSO) analysis. The prognostic significance and clinical implications of IGS were verified in International Cancer Genome Consortium (ICGC) and Chinese HCC (CHCC) cohorts. The molecular and immune characteristics and the benefit of immune checkpoint inhibitor (ICI) therapy in IGS-defined subgroups were analyzed. In addition, by leveraging the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing datasets, we determined the potential therapeutic agents for high IGS-risk patients. RESULTS: The IGS was constructed based on 8 immune-related hub genes with individual coefficients. The IGS risk model could robustly predict the survival of HCC patients in TCGA, ICGC, and CHCC cohorts. Compared with 4 previous established immune genes-based signatures, IGS exhibited superior performance in survival prediction. Additionally, for immunological characteristics and enriched pathways, a low-IGS score was correlated with IL-6/JAK/STAT3 signaling, inflammatory response and interferon α/γ response pathways, low TP53 mutation rate, high infiltration level, and more benefit from ICI therapy. In contrast, high IGS score manifested an immunosuppressive microenvironment and activated aggressive pathways. Finally, by in silico screening potential compounds, vindesine, ispinesib and dasatinib were identified as potential therapeutic agents for high-IGS risk patients. CONCLUSIONS: This study developed a robust IGS model for survival prediction of HCC patients, providing new insights into integrating tailored risk stratification with precise immunotherapy and screening potentially targeted agents. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40001-023-01091-w.