Cargando…
Multi-view feature representation and fusion for drug-drug interactions prediction
BACKGROUND: Drug-drug interactions (DDIs) prediction is vital for pharmacology and clinical application to avoid adverse drug reactions on patients. It is challenging because DDIs are related to multiple factors, such as genes, drug molecular structure, diseases, biological processes, side effects,...
Autores principales: | Wang, Jing, Zhang, Shuo, Li, Runzhi, Chen, Gang, Yan, Siyu, Ma, Lihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015807/ https://www.ncbi.nlm.nih.gov/pubmed/36918766 http://dx.doi.org/10.1186/s12859-023-05212-4 |
Ejemplares similares
-
Multi-type feature fusion based on graph neural network for drug-drug interaction prediction
por: He, Changxiang, et al.
Publicado: (2022) -
Multi-View Spectral Clustering Based on Multi-Smooth Representation Fusion for Cancer Subtype Prediction
por: Liu, Jian, et al.
Publicado: (2021) -
Multitype drug interaction prediction based on the deep fusion of drug features and topological relationships
por: Kang, Li-Ping, et al.
Publicado: (2022) -
Small molecule drug and biotech drug interaction prediction based on multi-modal representation learning
por: Huang, Dingkai, et al.
Publicado: (2022) -
AMMVF-DTI: A Novel Model Predicting Drug–Target Interactions Based on Attention Mechanism and Multi-View Fusion
por: Wang, Lu, et al.
Publicado: (2023)