Cargando…
Interpretable Machine Learning of Two‐Photon Absorption
Molecules with strong two‐photon absorption (TPA) are important in many advanced applications such as upconverted laser and photodynamic therapy, but their design is hampered by the high cost of experimental screening and accurate quantum chemical (QC) calculations. Here a systematic study is perfor...
Autores principales: | Su, Yuming, Dai, Yiheng, Zeng, Yifan, Wei, Caiyun, Chen, Yangtao, Ge, Fuchun, Zheng, Peikun, Zhou, Da, Dral, Pavlo O., Wang, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015897/ https://www.ncbi.nlm.nih.gov/pubmed/36658720 http://dx.doi.org/10.1002/advs.202204902 |
Ejemplares similares
-
Machine Learning for Absorption Cross Sections
por: Xue, Bao-Xin, et al.
Publicado: (2020) -
Choosing the right molecular machine learning potential
por: Pinheiro, Max, et al.
Publicado: (2021) -
MLatom 2: An Integrative Platform for Atomistic Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2021) -
Nonadiabatic Excited-State Dynamics with Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2018) -
Machine Learning of Parameters for Accurate Semiempirical
Quantum Chemical Calculations
por: Dral, Pavlo O., et al.
Publicado: (2015)