Cargando…
Tailoring brain–machine interface rehabilitation training based on neural reorganization: towards personalized treatment for stroke patients
Electroencephalogram (EEG)-based brain–machine interface (BMI) has the potential to enhance rehabilitation training efficiency, but it still remains elusive regarding how to design BMI training for heterogeneous stroke patients with varied neural reorganization. Here, we hypothesize that tailoring B...
Autores principales: | Jia, Tianyu, Li, Chong, Mo, Linhong, Qian, Chao, Li, Wei, Xu, Quan, Pan, Yu, Liu, Aixian, Ji, Linhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10016036/ https://www.ncbi.nlm.nih.gov/pubmed/35788284 http://dx.doi.org/10.1093/cercor/bhac259 |
Ejemplares similares
-
Lesion-specific cortical activation following sensory stimulation in patients with subacute stroke
por: Li, Wei, et al.
Publicado: (2023) -
Brain-Computer Interface Channel-Selection Strategy Based on Analysis of Event-Related Desynchronization Topography in Stroke Patients
por: Li, Chong, et al.
Publicado: (2019) -
The value of RPS15 and MRPS27 in ischemic stroke
por: Zhao, Man, et al.
Publicado: (2023) -
Quantitative Assessment of Motor Function for Patients with a Stroke by an End-Effector Upper Limb Rehabilitation Robot
por: Liu, Yali, et al.
Publicado: (2020) -
Application of Transcranial Magnetic Stimulation with Electroencephalography in the Evaluation of Brain Function Changes after Stroke
por: Mo, Linhong, et al.
Publicado: (2023)