Cargando…
Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages
Confinement of molecules in a synthetic host can physically isolate even their unstable temporary structures, which has potential for application to protein transient structure analysis. Here we report the NMR snapshot observation of protein unfolding and refolding processes by confining a target pr...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10016334/ https://www.ncbi.nlm.nih.gov/pubmed/36937586 http://dx.doi.org/10.1039/d2sc05879k |
_version_ | 1784907385651855360 |
---|---|
author | Nakama, Takahiro Rossen, Anouk Ebihara, Risa Yagi-Utsumi, Maho Fujita, Daishi Kato, Koichi Sato, Sota Fujita, Makoto |
author_facet | Nakama, Takahiro Rossen, Anouk Ebihara, Risa Yagi-Utsumi, Maho Fujita, Daishi Kato, Koichi Sato, Sota Fujita, Makoto |
author_sort | Nakama, Takahiro |
collection | PubMed |
description | Confinement of molecules in a synthetic host can physically isolate even their unstable temporary structures, which has potential for application to protein transient structure analysis. Here we report the NMR snapshot observation of protein unfolding and refolding processes by confining a target protein in a self-assembled coordination cage. With increasing acetonitrile content in CD(3)CN/H(2)O media (50 to 90 vol%), the folding structure of a protein sharply denatured at 83 vol%, clearly revealing the regions of initial unfolding. Unfavorable aggregation of the protein leading to irreversible precipitation is completely prevented because of the spatial isolation of the single protein molecule in the cage. When the acetonitrile content reversed (84 to 70 vol%), the once-denatured protein started to regain its original folded structure at 80 vol%, showing that the protein folding/unfolding process can be referred to as a phase transition with hysteresis behavior. |
format | Online Article Text |
id | pubmed-10016334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-100163342023-03-16 Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages Nakama, Takahiro Rossen, Anouk Ebihara, Risa Yagi-Utsumi, Maho Fujita, Daishi Kato, Koichi Sato, Sota Fujita, Makoto Chem Sci Chemistry Confinement of molecules in a synthetic host can physically isolate even their unstable temporary structures, which has potential for application to protein transient structure analysis. Here we report the NMR snapshot observation of protein unfolding and refolding processes by confining a target protein in a self-assembled coordination cage. With increasing acetonitrile content in CD(3)CN/H(2)O media (50 to 90 vol%), the folding structure of a protein sharply denatured at 83 vol%, clearly revealing the regions of initial unfolding. Unfavorable aggregation of the protein leading to irreversible precipitation is completely prevented because of the spatial isolation of the single protein molecule in the cage. When the acetonitrile content reversed (84 to 70 vol%), the once-denatured protein started to regain its original folded structure at 80 vol%, showing that the protein folding/unfolding process can be referred to as a phase transition with hysteresis behavior. The Royal Society of Chemistry 2023-02-22 /pmc/articles/PMC10016334/ /pubmed/36937586 http://dx.doi.org/10.1039/d2sc05879k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Nakama, Takahiro Rossen, Anouk Ebihara, Risa Yagi-Utsumi, Maho Fujita, Daishi Kato, Koichi Sato, Sota Fujita, Makoto Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages |
title | Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages |
title_full | Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages |
title_fullStr | Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages |
title_full_unstemmed | Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages |
title_short | Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages |
title_sort | hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10016334/ https://www.ncbi.nlm.nih.gov/pubmed/36937586 http://dx.doi.org/10.1039/d2sc05879k |
work_keys_str_mv | AT nakamatakahiro hysteresisbehaviorintheunfoldingrefoldingprocessesofaproteintrappedinmetallocages AT rossenanouk hysteresisbehaviorintheunfoldingrefoldingprocessesofaproteintrappedinmetallocages AT ebihararisa hysteresisbehaviorintheunfoldingrefoldingprocessesofaproteintrappedinmetallocages AT yagiutsumimaho hysteresisbehaviorintheunfoldingrefoldingprocessesofaproteintrappedinmetallocages AT fujitadaishi hysteresisbehaviorintheunfoldingrefoldingprocessesofaproteintrappedinmetallocages AT katokoichi hysteresisbehaviorintheunfoldingrefoldingprocessesofaproteintrappedinmetallocages AT satosota hysteresisbehaviorintheunfoldingrefoldingprocessesofaproteintrappedinmetallocages AT fujitamakoto hysteresisbehaviorintheunfoldingrefoldingprocessesofaproteintrappedinmetallocages |