Cargando…
Uncovering spatiotemporal patterns of atrophy in progressive supranuclear palsy using unsupervised machine learning
To better understand the pathological and phenotypic heterogeneity of progressive supranuclear palsy and the links between the two, we applied a novel unsupervised machine learning algorithm (Subtype and Stage Inference) to the largest MRI data set to date of people with clinically diagnosed progres...
Autores principales: | Scotton, William J, Shand, Cameron, Todd, Emily, Bocchetta, Martina, Cash, David M, VandeVrede, Lawren, Heuer, Hilary, Young, Alexandra L, Oxtoby, Neil, Alexander, Daniel C, Rowe, James B, Morris, Huw R, Boxer, Adam L, Rohrer, Jonathan D, Wijeratne, Peter A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10016410/ https://www.ncbi.nlm.nih.gov/pubmed/36938523 http://dx.doi.org/10.1093/braincomms/fcad048 |
Ejemplares similares
-
A data-driven model of brain volume changes in progressive supranuclear
palsy
por: Scotton, W. J., et al.
Publicado: (2022) -
Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues
por: Samudra, Niyatee, et al.
Publicado: (2023) -
Correction to: Uncovering spatiotemporal patterns of atrophy in progressive supranuclear palsy using unsupervised machine learning
Publicado: (2023) -
Diagnostic Accuracy of Magnetic Resonance Imaging Measures of Brain Atrophy Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Degeneration
por: Illán-Gala, Ignacio, et al.
Publicado: (2022) -
Progressive Supranuclear Palsy and Corticobasal Degeneration: Pathophysiology and Treatment Options
por: Lamb, Ruth, et al.
Publicado: (2016)