Cargando…
Explainable AI identifies diagnostic cells of genetic AML subtypes
Explainable AI is deemed essential for clinical applications as it allows rationalizing model predictions, helping to build trust between clinicians and automated decision support tools. We developed an inherently explainable AI model for the classification of acute myeloid leukemia subtypes from bl...
Autores principales: | Hehr, Matthias, Sadafi, Ario, Matek, Christian, Lienemann, Peter, Pohlkamp, Christian, Haferlach, Torsten, Spiekermann, Karsten, Marr, Carsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10016704/ https://www.ncbi.nlm.nih.gov/pubmed/36921004 http://dx.doi.org/10.1371/journal.pdig.0000187 |
Ejemplares similares
-
Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set
por: Matek, Christian, et al.
Publicado: (2021) -
RedTell: an AI tool for interpretable analysis of red blood cell morphology
por: Sadafi, Ario, et al.
Publicado: (2023) -
P694: RISK ASSESSMENT ACCORDING TO IPSS-M IS SUPERIOR TO AML ELN 2022 RISK CLASSIFICATION IN MDS/AML PATIENTS DEFINED BY ICC – IS AN INCLUSION INTO AML TRIALS JUSTIFIED?
por: Huber, Sandra, et al.
Publicado: (2023) -
Risk assessment according to IPSS-M is superior to AML ELN risk classification in MDS/AML overlap patients defined by ICC
por: Huber, Sandra, et al.
Publicado: (2023) -
AML classification in the year 2023: How to avoid a Babylonian confusion of languages
por: Huber, Sandra, et al.
Publicado: (2023)