Cargando…

Evolution of median fin patterning and modularity in living and fossil osteichthyans

Morphological and developmental similarities, and interactions among developing structures are interpreted as evidences of modularity. Such similarities exist between the dorsal and anal fins of living actinopterygians, on the anteroposterior axis: (1) both fins differentiate in the same direction [...

Descripción completa

Detalles Bibliográficos
Autores principales: Charest, France, Mondéjar Fernández, Jorge, Grünbaum, Thomas, Cloutier, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10016723/
https://www.ncbi.nlm.nih.gov/pubmed/36921006
http://dx.doi.org/10.1371/journal.pone.0272246
Descripción
Sumario:Morphological and developmental similarities, and interactions among developing structures are interpreted as evidences of modularity. Such similarities exist between the dorsal and anal fins of living actinopterygians, on the anteroposterior axis: (1) both fins differentiate in the same direction [dorsal and anal fin patterning module (DAFPM)], and (2) radials and lepidotrichia differentiate in the same direction [endoskeleton and exoskeleton module (EEM)]. To infer the evolution of these common developmental patternings among osteichthyans, we address (1) the complete description and quantification of the DAFPM and EEM in a living actinopterygian (the rainbow trout Oncorhynchus mykiss) and (2) the presence of these modules in fossil osteichthyans (coelacanths, lungfishes, porolepiforms and ‘osteolepiforms’). In Oncorhynchus, sequences of skeletal elements are determined based on (1) apparition (radials and lepidotrichia), (2) chondrification (radials), (3) ossification (radials and lepidotrichia), and (4) segmentation plus bifurcation (lepidotrichia). Correlations are then explored between sequences. In fossil osteichthyans, sequences are determined based on (1) ossification (radials and lepidotrichia), (2) segmentation, and (3) bifurcation of lepidotrichia. Segmentation and bifurcation patterns were found crucial for comparisons between extant and extinct osteichthyan taxa. Our data suggest that the EEM is plesiomorphic at least for actinopterygians, and the DAFPM is plesiomorphic for osteichthyans, with homoplastic dissociation. Finally, recurrent patterns suggest the presence of a Lepidotrichia Patterning Module (LPM).