Cargando…

Bubble wall confinement–driven molecular assembly toward sub–12 nm and beyond precision patterning

Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble wal...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Zhiyuan, Zhou, Peng, Min, Fanyi, Chen, Shengnan, Guo, Mengmeng, Huang, Zhandong, Ji, Shiyang, Yan, Yongli, Yin, Xiaodong, Jiang, Hanqiu, Ke, Yubin, Zhao, Yong Sheng, Yan, Xuehai, Qiao, Yali, Song, Yanlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017045/
https://www.ncbi.nlm.nih.gov/pubmed/36921052
http://dx.doi.org/10.1126/sciadv.adf3567
_version_ 1784907494938640384
author Qu, Zhiyuan
Zhou, Peng
Min, Fanyi
Chen, Shengnan
Guo, Mengmeng
Huang, Zhandong
Ji, Shiyang
Yan, Yongli
Yin, Xiaodong
Jiang, Hanqiu
Ke, Yubin
Zhao, Yong Sheng
Yan, Xuehai
Qiao, Yali
Song, Yanlin
author_facet Qu, Zhiyuan
Zhou, Peng
Min, Fanyi
Chen, Shengnan
Guo, Mengmeng
Huang, Zhandong
Ji, Shiyang
Yan, Yongli
Yin, Xiaodong
Jiang, Hanqiu
Ke, Yubin
Zhao, Yong Sheng
Yan, Xuehai
Qiao, Yali
Song, Yanlin
author_sort Qu, Zhiyuan
collection PubMed
description Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble walls to confine the self-assembly of molecules and achieve ultrahigh-precision assembly up to 12 nanometers corresponding to the critical point toward the Newton black film limit. The disjoining pressure describing the intermolecular interaction could predict the highest precision effectively. The symmetric molecules exhibit better reconfiguration capacity and smaller preaggregates than the asymmetric ones, which are helpful in stabilizing the drainage of foam films and construct high-precision patterns. Our results confirm the robustness of the bubble template to prepare molecular-scale patterns, verify the criticality of molecular symmetry to obtain the ultimate precision, and predict the application potential of high-precision organic patterns in hierarchical self-assembly and high-sensitivity sensors.
format Online
Article
Text
id pubmed-10017045
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-100170452023-03-16 Bubble wall confinement–driven molecular assembly toward sub–12 nm and beyond precision patterning Qu, Zhiyuan Zhou, Peng Min, Fanyi Chen, Shengnan Guo, Mengmeng Huang, Zhandong Ji, Shiyang Yan, Yongli Yin, Xiaodong Jiang, Hanqiu Ke, Yubin Zhao, Yong Sheng Yan, Xuehai Qiao, Yali Song, Yanlin Sci Adv Physical and Materials Sciences Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble walls to confine the self-assembly of molecules and achieve ultrahigh-precision assembly up to 12 nanometers corresponding to the critical point toward the Newton black film limit. The disjoining pressure describing the intermolecular interaction could predict the highest precision effectively. The symmetric molecules exhibit better reconfiguration capacity and smaller preaggregates than the asymmetric ones, which are helpful in stabilizing the drainage of foam films and construct high-precision patterns. Our results confirm the robustness of the bubble template to prepare molecular-scale patterns, verify the criticality of molecular symmetry to obtain the ultimate precision, and predict the application potential of high-precision organic patterns in hierarchical self-assembly and high-sensitivity sensors. American Association for the Advancement of Science 2023-03-15 /pmc/articles/PMC10017045/ /pubmed/36921052 http://dx.doi.org/10.1126/sciadv.adf3567 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Qu, Zhiyuan
Zhou, Peng
Min, Fanyi
Chen, Shengnan
Guo, Mengmeng
Huang, Zhandong
Ji, Shiyang
Yan, Yongli
Yin, Xiaodong
Jiang, Hanqiu
Ke, Yubin
Zhao, Yong Sheng
Yan, Xuehai
Qiao, Yali
Song, Yanlin
Bubble wall confinement–driven molecular assembly toward sub–12 nm and beyond precision patterning
title Bubble wall confinement–driven molecular assembly toward sub–12 nm and beyond precision patterning
title_full Bubble wall confinement–driven molecular assembly toward sub–12 nm and beyond precision patterning
title_fullStr Bubble wall confinement–driven molecular assembly toward sub–12 nm and beyond precision patterning
title_full_unstemmed Bubble wall confinement–driven molecular assembly toward sub–12 nm and beyond precision patterning
title_short Bubble wall confinement–driven molecular assembly toward sub–12 nm and beyond precision patterning
title_sort bubble wall confinement–driven molecular assembly toward sub–12 nm and beyond precision patterning
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017045/
https://www.ncbi.nlm.nih.gov/pubmed/36921052
http://dx.doi.org/10.1126/sciadv.adf3567
work_keys_str_mv AT quzhiyuan bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT zhoupeng bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT minfanyi bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT chenshengnan bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT guomengmeng bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT huangzhandong bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT jishiyang bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT yanyongli bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT yinxiaodong bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT jianghanqiu bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT keyubin bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT zhaoyongsheng bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT yanxuehai bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT qiaoyali bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning
AT songyanlin bubblewallconfinementdrivenmolecularassemblytowardsub12nmandbeyondprecisionpatterning