Cargando…

Using data mining techniques deep analysis and theoretical investigation of COVID-19 pandemic

This study uses K-Means Clustering to analyze Corona-Virus Diseases (Covid-19). Data mining in medicine has generated novel approaches to examine diseases. Coronavirus is difficult to treat because of its intricate structure, shape, and texture. Due to data mining improvements, the K-Means approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Allmuttar, Atheer Y.O., Alkhafaji, Sarmad K.D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017173/
https://www.ncbi.nlm.nih.gov/pubmed/36945699
http://dx.doi.org/10.1016/j.measen.2023.100747
Descripción
Sumario:This study uses K-Means Clustering to analyze Corona-Virus Diseases (Covid-19). Data mining in medicine has generated novel approaches to examine diseases. Coronavirus is difficult to treat because of its intricate structure, shape, and texture. Due to data mining improvements, the K-Means approach has been developed for evaluating covid-19. Observe the outbreak's evolution, including its peak, and containment measures. A basic K-Means model is used to simulate Coronavirus's prevalence in Iraq. Pandemic-prevention efforts may slow its spread. If inhibition grows to 50%, Iraq will have 500,000 patients by year's end. If precautions were halved, the number would top 1 million. If we abandon all measures, the sickness will worsen. In that case, 55% of the population may be affected by the end of the month. This number will drop after September.