Cargando…
Using data mining techniques deep analysis and theoretical investigation of COVID-19 pandemic
This study uses K-Means Clustering to analyze Corona-Virus Diseases (Covid-19). Data mining in medicine has generated novel approaches to examine diseases. Coronavirus is difficult to treat because of its intricate structure, shape, and texture. Due to data mining improvements, the K-Means approach...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017173/ https://www.ncbi.nlm.nih.gov/pubmed/36945699 http://dx.doi.org/10.1016/j.measen.2023.100747 |
Sumario: | This study uses K-Means Clustering to analyze Corona-Virus Diseases (Covid-19). Data mining in medicine has generated novel approaches to examine diseases. Coronavirus is difficult to treat because of its intricate structure, shape, and texture. Due to data mining improvements, the K-Means approach has been developed for evaluating covid-19. Observe the outbreak's evolution, including its peak, and containment measures. A basic K-Means model is used to simulate Coronavirus's prevalence in Iraq. Pandemic-prevention efforts may slow its spread. If inhibition grows to 50%, Iraq will have 500,000 patients by year's end. If precautions were halved, the number would top 1 million. If we abandon all measures, the sickness will worsen. In that case, 55% of the population may be affected by the end of the month. This number will drop after September. |
---|