Cargando…
Detecting model misconducts in decentralized healthcare federated learning
BACKGROUND: To accelerate healthcare/genomic medicine research and facilitate quality improvement, researchers have started cross-institutional collaborations to use artificial intelligence on clinical/genomic data. However, there are real-world risks of incorrect models being submitted to the learn...
Autores principales: | Kuo, Tsung-Ting, Pham, Anh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017272/ https://www.ncbi.nlm.nih.gov/pubmed/34923447 http://dx.doi.org/10.1016/j.ijmedinf.2021.104658 |
Ejemplares similares
-
Decentralized federated learning through proxy model sharing
por: Kalra, Shivam, et al.
Publicado: (2023) -
Decentralized Federated Learning for Healthcare Networks: A Case Study on Tumor Segmentation
por: Camajori Tedeschini, Bernardo, et al.
Publicado: (2022) -
Swarm learning for decentralized healthcare
por: Becker, Matthias
Publicado: (2022) -
CertificateChain: decentralized healthcare training certificate management
system using blockchain and smart contracts
por: Tellew, Jeffrey, et al.
Publicado: (2022) -
EXpectation Propagation LOgistic REgRession on permissioned blockCHAIN (ExplorerChain): decentralized online healthcare/genomics predictive model learning
por: Kuo, Tsung-Ting, et al.
Publicado: (2020)