Cargando…

Mitotic spindle positioning protein (MISP) deficiency exacerbates dextran sulfate sodium (DSS)-induced colitis in mice

Inflammatory bowel disease (IBD) is classified into two types: Crohn’s disease and ulcerative colitis. In IBD, the imbalance between the pro-inflammatory and anti-inflammatory cytokines prevents recovery from the inflammatory state, resulting in chronic inflammation in the colon. The mitotic spindle...

Descripción completa

Detalles Bibliográficos
Autores principales: HIURA, Koki, MARUYAMA, Takumi, WATANABE, Masaki, NAKANO, Kenta, OKAMURA, Tadashi, SASAKI, Hayato, SASAKI, Nobuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japanese Society of Veterinary Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017287/
https://www.ncbi.nlm.nih.gov/pubmed/36596561
http://dx.doi.org/10.1292/jvms.22-0483
Descripción
Sumario:Inflammatory bowel disease (IBD) is classified into two types: Crohn’s disease and ulcerative colitis. In IBD, the imbalance between the pro-inflammatory and anti-inflammatory cytokines prevents recovery from the inflammatory state, resulting in chronic inflammation in the colon. The mitotic spindle positioning protein (MISP) is localized to the apical membrane in the colon. In this study, we observed increased expression of MISP in the intestinal epithelial cells in dextran sulfate sodium (DSS)-induced colitis in mice. MISP-deficient mice receiving DSS showed significant exacerbation of colitis (e.g., weight loss, loss of the crypts). The intestinal epithelial cells of the MISP-deficient mice showed a trend towards decreased cell proliferation after DSS treatment. Reverse transcription followed by quantitative polymerase chain reaction revealed that the expression levels of Tgfb1, an anti-inflammatory cytokine, were significantly reduced in the colon of MISP-deficient mice compared with the wild-type mice regardless of DSS treatment. These findings indicate that MISP may play a role in the recovery of the colon after inflammation through its anti-inflammatory and proliferative activities, suggesting that MISP may be a new therapeutic target for IBD.