Cargando…

Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models

The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We deve...

Descripción completa

Detalles Bibliográficos
Autores principales: Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Leal Rodríguez, Cristina, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, Brunak, Søren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017515/
https://www.ncbi.nlm.nih.gov/pubmed/36593394
http://dx.doi.org/10.1038/s41587-022-01520-x
_version_ 1784907604670021632
author Allesøe, Rosa Lundbye
Lundgaard, Agnete Troen
Hernández Medina, Ricardo
Aguayo-Orozco, Alejandro
Johansen, Joachim
Nissen, Jakob Nybo
Brorsson, Caroline
Mazzoni, Gianluca
Niu, Lili
Biel, Jorge Hernansanz
Leal Rodríguez, Cristina
Brasas, Valentas
Webel, Henry
Benros, Michael Eriksen
Pedersen, Anders Gorm
Chmura, Piotr Jaroslaw
Jacobsen, Ulrik Plesner
Mari, Andrea
Koivula, Robert
Mahajan, Anubha
Vinuela, Ana
Tajes, Juan Fernandez
Sharma, Sapna
Haid, Mark
Hong, Mun-Gwan
Musholt, Petra B.
De Masi, Federico
Vogt, Josef
Pedersen, Helle Krogh
Gudmundsdottir, Valborg
Jones, Angus
Kennedy, Gwen
Bell, Jimmy
Thomas, E. Louise
Frost, Gary
Thomsen, Henrik
Hansen, Elizaveta
Hansen, Tue Haldor
Vestergaard, Henrik
Muilwijk, Mirthe
Blom, Marieke T.
‘t Hart, Leen M.
Pattou, Francois
Raverdy, Violeta
Brage, Soren
Kokkola, Tarja
Heggie, Alison
McEvoy, Donna
Mourby, Miranda
Kaye, Jane
Hattersley, Andrew
McDonald, Timothy
Ridderstråle, Martin
Walker, Mark
Forgie, Ian
Giordano, Giuseppe N.
Pavo, Imre
Ruetten, Hartmut
Pedersen, Oluf
Hansen, Torben
Dermitzakis, Emmanouil
Franks, Paul W.
Schwenk, Jochen M.
Adamski, Jerzy
McCarthy, Mark I.
Pearson, Ewan
Banasik, Karina
Rasmussen, Simon
Brunak, Søren
author_facet Allesøe, Rosa Lundbye
Lundgaard, Agnete Troen
Hernández Medina, Ricardo
Aguayo-Orozco, Alejandro
Johansen, Joachim
Nissen, Jakob Nybo
Brorsson, Caroline
Mazzoni, Gianluca
Niu, Lili
Biel, Jorge Hernansanz
Leal Rodríguez, Cristina
Brasas, Valentas
Webel, Henry
Benros, Michael Eriksen
Pedersen, Anders Gorm
Chmura, Piotr Jaroslaw
Jacobsen, Ulrik Plesner
Mari, Andrea
Koivula, Robert
Mahajan, Anubha
Vinuela, Ana
Tajes, Juan Fernandez
Sharma, Sapna
Haid, Mark
Hong, Mun-Gwan
Musholt, Petra B.
De Masi, Federico
Vogt, Josef
Pedersen, Helle Krogh
Gudmundsdottir, Valborg
Jones, Angus
Kennedy, Gwen
Bell, Jimmy
Thomas, E. Louise
Frost, Gary
Thomsen, Henrik
Hansen, Elizaveta
Hansen, Tue Haldor
Vestergaard, Henrik
Muilwijk, Mirthe
Blom, Marieke T.
‘t Hart, Leen M.
Pattou, Francois
Raverdy, Violeta
Brage, Soren
Kokkola, Tarja
Heggie, Alison
McEvoy, Donna
Mourby, Miranda
Kaye, Jane
Hattersley, Andrew
McDonald, Timothy
Ridderstråle, Martin
Walker, Mark
Forgie, Ian
Giordano, Giuseppe N.
Pavo, Imre
Ruetten, Hartmut
Pedersen, Oluf
Hansen, Torben
Dermitzakis, Emmanouil
Franks, Paul W.
Schwenk, Jochen M.
Adamski, Jerzy
McCarthy, Mark I.
Pearson, Ewan
Banasik, Karina
Rasmussen, Simon
Brunak, Søren
author_sort Allesøe, Rosa Lundbye
collection PubMed
description The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
format Online
Article
Text
id pubmed-10017515
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-100175152023-03-17 Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models Allesøe, Rosa Lundbye Lundgaard, Agnete Troen Hernández Medina, Ricardo Aguayo-Orozco, Alejandro Johansen, Joachim Nissen, Jakob Nybo Brorsson, Caroline Mazzoni, Gianluca Niu, Lili Biel, Jorge Hernansanz Leal Rodríguez, Cristina Brasas, Valentas Webel, Henry Benros, Michael Eriksen Pedersen, Anders Gorm Chmura, Piotr Jaroslaw Jacobsen, Ulrik Plesner Mari, Andrea Koivula, Robert Mahajan, Anubha Vinuela, Ana Tajes, Juan Fernandez Sharma, Sapna Haid, Mark Hong, Mun-Gwan Musholt, Petra B. De Masi, Federico Vogt, Josef Pedersen, Helle Krogh Gudmundsdottir, Valborg Jones, Angus Kennedy, Gwen Bell, Jimmy Thomas, E. Louise Frost, Gary Thomsen, Henrik Hansen, Elizaveta Hansen, Tue Haldor Vestergaard, Henrik Muilwijk, Mirthe Blom, Marieke T. ‘t Hart, Leen M. Pattou, Francois Raverdy, Violeta Brage, Soren Kokkola, Tarja Heggie, Alison McEvoy, Donna Mourby, Miranda Kaye, Jane Hattersley, Andrew McDonald, Timothy Ridderstråle, Martin Walker, Mark Forgie, Ian Giordano, Giuseppe N. Pavo, Imre Ruetten, Hartmut Pedersen, Oluf Hansen, Torben Dermitzakis, Emmanouil Franks, Paul W. Schwenk, Jochen M. Adamski, Jerzy McCarthy, Mark I. Pearson, Ewan Banasik, Karina Rasmussen, Simon Brunak, Søren Nat Biotechnol Article The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities. Nature Publishing Group US 2023-01-02 2023 /pmc/articles/PMC10017515/ /pubmed/36593394 http://dx.doi.org/10.1038/s41587-022-01520-x Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Allesøe, Rosa Lundbye
Lundgaard, Agnete Troen
Hernández Medina, Ricardo
Aguayo-Orozco, Alejandro
Johansen, Joachim
Nissen, Jakob Nybo
Brorsson, Caroline
Mazzoni, Gianluca
Niu, Lili
Biel, Jorge Hernansanz
Leal Rodríguez, Cristina
Brasas, Valentas
Webel, Henry
Benros, Michael Eriksen
Pedersen, Anders Gorm
Chmura, Piotr Jaroslaw
Jacobsen, Ulrik Plesner
Mari, Andrea
Koivula, Robert
Mahajan, Anubha
Vinuela, Ana
Tajes, Juan Fernandez
Sharma, Sapna
Haid, Mark
Hong, Mun-Gwan
Musholt, Petra B.
De Masi, Federico
Vogt, Josef
Pedersen, Helle Krogh
Gudmundsdottir, Valborg
Jones, Angus
Kennedy, Gwen
Bell, Jimmy
Thomas, E. Louise
Frost, Gary
Thomsen, Henrik
Hansen, Elizaveta
Hansen, Tue Haldor
Vestergaard, Henrik
Muilwijk, Mirthe
Blom, Marieke T.
‘t Hart, Leen M.
Pattou, Francois
Raverdy, Violeta
Brage, Soren
Kokkola, Tarja
Heggie, Alison
McEvoy, Donna
Mourby, Miranda
Kaye, Jane
Hattersley, Andrew
McDonald, Timothy
Ridderstråle, Martin
Walker, Mark
Forgie, Ian
Giordano, Giuseppe N.
Pavo, Imre
Ruetten, Hartmut
Pedersen, Oluf
Hansen, Torben
Dermitzakis, Emmanouil
Franks, Paul W.
Schwenk, Jochen M.
Adamski, Jerzy
McCarthy, Mark I.
Pearson, Ewan
Banasik, Karina
Rasmussen, Simon
Brunak, Søren
Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
title Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
title_full Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
title_fullStr Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
title_full_unstemmed Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
title_short Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
title_sort discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017515/
https://www.ncbi.nlm.nih.gov/pubmed/36593394
http://dx.doi.org/10.1038/s41587-022-01520-x
work_keys_str_mv AT allesøerosalundbye discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT lundgaardagnetetroen discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT hernandezmedinaricardo discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT aguayoorozcoalejandro discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT johansenjoachim discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT nissenjakobnybo discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT brorssoncaroline discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT mazzonigianluca discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT niulili discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT bieljorgehernansanz discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT lealrodriguezcristina discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT brasasvalentas discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT webelhenry discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT benrosmichaeleriksen discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT pedersenandersgorm discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT chmurapiotrjaroslaw discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT jacobsenulrikplesner discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT mariandrea discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT koivularobert discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT mahajananubha discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT vinuelaana discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT tajesjuanfernandez discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT sharmasapna discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT haidmark discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT hongmungwan discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT musholtpetrab discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT demasifederico discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT vogtjosef discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT pedersenhellekrogh discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT gudmundsdottirvalborg discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT jonesangus discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT kennedygwen discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT belljimmy discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT thomaselouise discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT frostgary discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT thomsenhenrik discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT hansenelizaveta discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT hansentuehaldor discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT vestergaardhenrik discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT muilwijkmirthe discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT blommarieket discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT thartleenm discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT pattoufrancois discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT raverdyvioleta discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT bragesoren discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT kokkolatarja discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT heggiealison discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT mcevoydonna discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT mourbymiranda discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT kayejane discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT hattersleyandrew discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT mcdonaldtimothy discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT ridderstralemartin discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT walkermark discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT forgieian discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT giordanogiuseppen discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT pavoimre discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT ruettenhartmut discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT pedersenoluf discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT hansentorben discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT dermitzakisemmanouil discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT frankspaulw discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT schwenkjochenm discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT adamskijerzy discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT mccarthymarki discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT pearsonewan discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT banasikkarina discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT rasmussensimon discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT brunaksøren discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels
AT discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels