Cargando…
Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We deve...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017515/ https://www.ncbi.nlm.nih.gov/pubmed/36593394 http://dx.doi.org/10.1038/s41587-022-01520-x |
_version_ | 1784907604670021632 |
---|---|
author | Allesøe, Rosa Lundbye Lundgaard, Agnete Troen Hernández Medina, Ricardo Aguayo-Orozco, Alejandro Johansen, Joachim Nissen, Jakob Nybo Brorsson, Caroline Mazzoni, Gianluca Niu, Lili Biel, Jorge Hernansanz Leal Rodríguez, Cristina Brasas, Valentas Webel, Henry Benros, Michael Eriksen Pedersen, Anders Gorm Chmura, Piotr Jaroslaw Jacobsen, Ulrik Plesner Mari, Andrea Koivula, Robert Mahajan, Anubha Vinuela, Ana Tajes, Juan Fernandez Sharma, Sapna Haid, Mark Hong, Mun-Gwan Musholt, Petra B. De Masi, Federico Vogt, Josef Pedersen, Helle Krogh Gudmundsdottir, Valborg Jones, Angus Kennedy, Gwen Bell, Jimmy Thomas, E. Louise Frost, Gary Thomsen, Henrik Hansen, Elizaveta Hansen, Tue Haldor Vestergaard, Henrik Muilwijk, Mirthe Blom, Marieke T. ‘t Hart, Leen M. Pattou, Francois Raverdy, Violeta Brage, Soren Kokkola, Tarja Heggie, Alison McEvoy, Donna Mourby, Miranda Kaye, Jane Hattersley, Andrew McDonald, Timothy Ridderstråle, Martin Walker, Mark Forgie, Ian Giordano, Giuseppe N. Pavo, Imre Ruetten, Hartmut Pedersen, Oluf Hansen, Torben Dermitzakis, Emmanouil Franks, Paul W. Schwenk, Jochen M. Adamski, Jerzy McCarthy, Mark I. Pearson, Ewan Banasik, Karina Rasmussen, Simon Brunak, Søren |
author_facet | Allesøe, Rosa Lundbye Lundgaard, Agnete Troen Hernández Medina, Ricardo Aguayo-Orozco, Alejandro Johansen, Joachim Nissen, Jakob Nybo Brorsson, Caroline Mazzoni, Gianluca Niu, Lili Biel, Jorge Hernansanz Leal Rodríguez, Cristina Brasas, Valentas Webel, Henry Benros, Michael Eriksen Pedersen, Anders Gorm Chmura, Piotr Jaroslaw Jacobsen, Ulrik Plesner Mari, Andrea Koivula, Robert Mahajan, Anubha Vinuela, Ana Tajes, Juan Fernandez Sharma, Sapna Haid, Mark Hong, Mun-Gwan Musholt, Petra B. De Masi, Federico Vogt, Josef Pedersen, Helle Krogh Gudmundsdottir, Valborg Jones, Angus Kennedy, Gwen Bell, Jimmy Thomas, E. Louise Frost, Gary Thomsen, Henrik Hansen, Elizaveta Hansen, Tue Haldor Vestergaard, Henrik Muilwijk, Mirthe Blom, Marieke T. ‘t Hart, Leen M. Pattou, Francois Raverdy, Violeta Brage, Soren Kokkola, Tarja Heggie, Alison McEvoy, Donna Mourby, Miranda Kaye, Jane Hattersley, Andrew McDonald, Timothy Ridderstråle, Martin Walker, Mark Forgie, Ian Giordano, Giuseppe N. Pavo, Imre Ruetten, Hartmut Pedersen, Oluf Hansen, Torben Dermitzakis, Emmanouil Franks, Paul W. Schwenk, Jochen M. Adamski, Jerzy McCarthy, Mark I. Pearson, Ewan Banasik, Karina Rasmussen, Simon Brunak, Søren |
author_sort | Allesøe, Rosa Lundbye |
collection | PubMed |
description | The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities. |
format | Online Article Text |
id | pubmed-10017515 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-100175152023-03-17 Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models Allesøe, Rosa Lundbye Lundgaard, Agnete Troen Hernández Medina, Ricardo Aguayo-Orozco, Alejandro Johansen, Joachim Nissen, Jakob Nybo Brorsson, Caroline Mazzoni, Gianluca Niu, Lili Biel, Jorge Hernansanz Leal Rodríguez, Cristina Brasas, Valentas Webel, Henry Benros, Michael Eriksen Pedersen, Anders Gorm Chmura, Piotr Jaroslaw Jacobsen, Ulrik Plesner Mari, Andrea Koivula, Robert Mahajan, Anubha Vinuela, Ana Tajes, Juan Fernandez Sharma, Sapna Haid, Mark Hong, Mun-Gwan Musholt, Petra B. De Masi, Federico Vogt, Josef Pedersen, Helle Krogh Gudmundsdottir, Valborg Jones, Angus Kennedy, Gwen Bell, Jimmy Thomas, E. Louise Frost, Gary Thomsen, Henrik Hansen, Elizaveta Hansen, Tue Haldor Vestergaard, Henrik Muilwijk, Mirthe Blom, Marieke T. ‘t Hart, Leen M. Pattou, Francois Raverdy, Violeta Brage, Soren Kokkola, Tarja Heggie, Alison McEvoy, Donna Mourby, Miranda Kaye, Jane Hattersley, Andrew McDonald, Timothy Ridderstråle, Martin Walker, Mark Forgie, Ian Giordano, Giuseppe N. Pavo, Imre Ruetten, Hartmut Pedersen, Oluf Hansen, Torben Dermitzakis, Emmanouil Franks, Paul W. Schwenk, Jochen M. Adamski, Jerzy McCarthy, Mark I. Pearson, Ewan Banasik, Karina Rasmussen, Simon Brunak, Søren Nat Biotechnol Article The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities. Nature Publishing Group US 2023-01-02 2023 /pmc/articles/PMC10017515/ /pubmed/36593394 http://dx.doi.org/10.1038/s41587-022-01520-x Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Allesøe, Rosa Lundbye Lundgaard, Agnete Troen Hernández Medina, Ricardo Aguayo-Orozco, Alejandro Johansen, Joachim Nissen, Jakob Nybo Brorsson, Caroline Mazzoni, Gianluca Niu, Lili Biel, Jorge Hernansanz Leal Rodríguez, Cristina Brasas, Valentas Webel, Henry Benros, Michael Eriksen Pedersen, Anders Gorm Chmura, Piotr Jaroslaw Jacobsen, Ulrik Plesner Mari, Andrea Koivula, Robert Mahajan, Anubha Vinuela, Ana Tajes, Juan Fernandez Sharma, Sapna Haid, Mark Hong, Mun-Gwan Musholt, Petra B. De Masi, Federico Vogt, Josef Pedersen, Helle Krogh Gudmundsdottir, Valborg Jones, Angus Kennedy, Gwen Bell, Jimmy Thomas, E. Louise Frost, Gary Thomsen, Henrik Hansen, Elizaveta Hansen, Tue Haldor Vestergaard, Henrik Muilwijk, Mirthe Blom, Marieke T. ‘t Hart, Leen M. Pattou, Francois Raverdy, Violeta Brage, Soren Kokkola, Tarja Heggie, Alison McEvoy, Donna Mourby, Miranda Kaye, Jane Hattersley, Andrew McDonald, Timothy Ridderstråle, Martin Walker, Mark Forgie, Ian Giordano, Giuseppe N. Pavo, Imre Ruetten, Hartmut Pedersen, Oluf Hansen, Torben Dermitzakis, Emmanouil Franks, Paul W. Schwenk, Jochen M. Adamski, Jerzy McCarthy, Mark I. Pearson, Ewan Banasik, Karina Rasmussen, Simon Brunak, Søren Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models |
title | Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models |
title_full | Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models |
title_fullStr | Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models |
title_full_unstemmed | Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models |
title_short | Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models |
title_sort | discovery of drug–omics associations in type 2 diabetes with generative deep-learning models |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017515/ https://www.ncbi.nlm.nih.gov/pubmed/36593394 http://dx.doi.org/10.1038/s41587-022-01520-x |
work_keys_str_mv | AT allesøerosalundbye discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT lundgaardagnetetroen discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT hernandezmedinaricardo discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT aguayoorozcoalejandro discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT johansenjoachim discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT nissenjakobnybo discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT brorssoncaroline discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT mazzonigianluca discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT niulili discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT bieljorgehernansanz discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT lealrodriguezcristina discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT brasasvalentas discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT webelhenry discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT benrosmichaeleriksen discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT pedersenandersgorm discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT chmurapiotrjaroslaw discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT jacobsenulrikplesner discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT mariandrea discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT koivularobert discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT mahajananubha discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT vinuelaana discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT tajesjuanfernandez discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT sharmasapna discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT haidmark discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT hongmungwan discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT musholtpetrab discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT demasifederico discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT vogtjosef discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT pedersenhellekrogh discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT gudmundsdottirvalborg discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT jonesangus discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT kennedygwen discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT belljimmy discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT thomaselouise discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT frostgary discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT thomsenhenrik discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT hansenelizaveta discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT hansentuehaldor discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT vestergaardhenrik discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT muilwijkmirthe discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT blommarieket discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT thartleenm discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT pattoufrancois discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT raverdyvioleta discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT bragesoren discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT kokkolatarja discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT heggiealison discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT mcevoydonna discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT mourbymiranda discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT kayejane discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT hattersleyandrew discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT mcdonaldtimothy discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT ridderstralemartin discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT walkermark discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT forgieian discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT giordanogiuseppen discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT pavoimre discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT ruettenhartmut discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT pedersenoluf discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT hansentorben discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT dermitzakisemmanouil discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT frankspaulw discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT schwenkjochenm discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT adamskijerzy discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT mccarthymarki discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT pearsonewan discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT banasikkarina discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT rasmussensimon discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT brunaksøren discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels AT discoveryofdrugomicsassociationsintype2diabeteswithgenerativedeeplearningmodels |