Cargando…
An automatic entropy method to efficiently mask histology whole-slide images
Tissue segmentation of histology whole-slide images (WSI) remains a critical task in automated digital pathology workflows for both accurate disease diagnosis and deep phenotyping for research purposes. This is especially challenging when the tissue structure of biospecimens is relatively porous and...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017682/ https://www.ncbi.nlm.nih.gov/pubmed/36922520 http://dx.doi.org/10.1038/s41598-023-29638-1 |
_version_ | 1784907643535491072 |
---|---|
author | Song, Yipei Cisternino, Francesco Mekke, Joost M. de Borst, Gert J. de Kleijn, Dominique P. V. Pasterkamp, Gerard Vink, Aryan Glastonbury, Craig A. van der Laan, Sander W. Miller, Clint L. |
author_facet | Song, Yipei Cisternino, Francesco Mekke, Joost M. de Borst, Gert J. de Kleijn, Dominique P. V. Pasterkamp, Gerard Vink, Aryan Glastonbury, Craig A. van der Laan, Sander W. Miller, Clint L. |
author_sort | Song, Yipei |
collection | PubMed |
description | Tissue segmentation of histology whole-slide images (WSI) remains a critical task in automated digital pathology workflows for both accurate disease diagnosis and deep phenotyping for research purposes. This is especially challenging when the tissue structure of biospecimens is relatively porous and heterogeneous, such as for atherosclerotic plaques. In this study, we developed a unique approach called ‘EntropyMasker’ based on image entropy to tackle the fore- and background segmentation (masking) task in histology WSI. We evaluated our method on 97 high-resolution WSI of human carotid atherosclerotic plaques in the Athero-Express Biobank Study, constituting hematoxylin and eosin and 8 other staining types. Using multiple benchmarking metrics, we compared our method with four widely used segmentation methods: Otsu’s method, Adaptive mean, Adaptive Gaussian and slideMask and observed that our method had the highest sensitivity and Jaccard similarity index. We envision EntropyMasker to fill an important gap in WSI preprocessing, machine learning image analysis pipelines, and enable disease phenotyping beyond the field of atherosclerosis. |
format | Online Article Text |
id | pubmed-10017682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-100176822023-03-17 An automatic entropy method to efficiently mask histology whole-slide images Song, Yipei Cisternino, Francesco Mekke, Joost M. de Borst, Gert J. de Kleijn, Dominique P. V. Pasterkamp, Gerard Vink, Aryan Glastonbury, Craig A. van der Laan, Sander W. Miller, Clint L. Sci Rep Article Tissue segmentation of histology whole-slide images (WSI) remains a critical task in automated digital pathology workflows for both accurate disease diagnosis and deep phenotyping for research purposes. This is especially challenging when the tissue structure of biospecimens is relatively porous and heterogeneous, such as for atherosclerotic plaques. In this study, we developed a unique approach called ‘EntropyMasker’ based on image entropy to tackle the fore- and background segmentation (masking) task in histology WSI. We evaluated our method on 97 high-resolution WSI of human carotid atherosclerotic plaques in the Athero-Express Biobank Study, constituting hematoxylin and eosin and 8 other staining types. Using multiple benchmarking metrics, we compared our method with four widely used segmentation methods: Otsu’s method, Adaptive mean, Adaptive Gaussian and slideMask and observed that our method had the highest sensitivity and Jaccard similarity index. We envision EntropyMasker to fill an important gap in WSI preprocessing, machine learning image analysis pipelines, and enable disease phenotyping beyond the field of atherosclerosis. Nature Publishing Group UK 2023-03-15 /pmc/articles/PMC10017682/ /pubmed/36922520 http://dx.doi.org/10.1038/s41598-023-29638-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Song, Yipei Cisternino, Francesco Mekke, Joost M. de Borst, Gert J. de Kleijn, Dominique P. V. Pasterkamp, Gerard Vink, Aryan Glastonbury, Craig A. van der Laan, Sander W. Miller, Clint L. An automatic entropy method to efficiently mask histology whole-slide images |
title | An automatic entropy method to efficiently mask histology whole-slide images |
title_full | An automatic entropy method to efficiently mask histology whole-slide images |
title_fullStr | An automatic entropy method to efficiently mask histology whole-slide images |
title_full_unstemmed | An automatic entropy method to efficiently mask histology whole-slide images |
title_short | An automatic entropy method to efficiently mask histology whole-slide images |
title_sort | automatic entropy method to efficiently mask histology whole-slide images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017682/ https://www.ncbi.nlm.nih.gov/pubmed/36922520 http://dx.doi.org/10.1038/s41598-023-29638-1 |
work_keys_str_mv | AT songyipei anautomaticentropymethodtoefficientlymaskhistologywholeslideimages AT cisterninofrancesco anautomaticentropymethodtoefficientlymaskhistologywholeslideimages AT mekkejoostm anautomaticentropymethodtoefficientlymaskhistologywholeslideimages AT deborstgertj anautomaticentropymethodtoefficientlymaskhistologywholeslideimages AT dekleijndominiquepv anautomaticentropymethodtoefficientlymaskhistologywholeslideimages AT pasterkampgerard anautomaticentropymethodtoefficientlymaskhistologywholeslideimages AT vinkaryan anautomaticentropymethodtoefficientlymaskhistologywholeslideimages AT glastonburycraiga anautomaticentropymethodtoefficientlymaskhistologywholeslideimages AT vanderlaansanderw anautomaticentropymethodtoefficientlymaskhistologywholeslideimages AT millerclintl anautomaticentropymethodtoefficientlymaskhistologywholeslideimages AT songyipei automaticentropymethodtoefficientlymaskhistologywholeslideimages AT cisterninofrancesco automaticentropymethodtoefficientlymaskhistologywholeslideimages AT mekkejoostm automaticentropymethodtoefficientlymaskhistologywholeslideimages AT deborstgertj automaticentropymethodtoefficientlymaskhistologywholeslideimages AT dekleijndominiquepv automaticentropymethodtoefficientlymaskhistologywholeslideimages AT pasterkampgerard automaticentropymethodtoefficientlymaskhistologywholeslideimages AT vinkaryan automaticentropymethodtoefficientlymaskhistologywholeslideimages AT glastonburycraiga automaticentropymethodtoefficientlymaskhistologywholeslideimages AT vanderlaansanderw automaticentropymethodtoefficientlymaskhistologywholeslideimages AT millerclintl automaticentropymethodtoefficientlymaskhistologywholeslideimages |