Cargando…

An automatic entropy method to efficiently mask histology whole-slide images

Tissue segmentation of histology whole-slide images (WSI) remains a critical task in automated digital pathology workflows for both accurate disease diagnosis and deep phenotyping for research purposes. This is especially challenging when the tissue structure of biospecimens is relatively porous and...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Yipei, Cisternino, Francesco, Mekke, Joost M., de Borst, Gert J., de Kleijn, Dominique P. V., Pasterkamp, Gerard, Vink, Aryan, Glastonbury, Craig A., van der Laan, Sander W., Miller, Clint L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017682/
https://www.ncbi.nlm.nih.gov/pubmed/36922520
http://dx.doi.org/10.1038/s41598-023-29638-1
_version_ 1784907643535491072
author Song, Yipei
Cisternino, Francesco
Mekke, Joost M.
de Borst, Gert J.
de Kleijn, Dominique P. V.
Pasterkamp, Gerard
Vink, Aryan
Glastonbury, Craig A.
van der Laan, Sander W.
Miller, Clint L.
author_facet Song, Yipei
Cisternino, Francesco
Mekke, Joost M.
de Borst, Gert J.
de Kleijn, Dominique P. V.
Pasterkamp, Gerard
Vink, Aryan
Glastonbury, Craig A.
van der Laan, Sander W.
Miller, Clint L.
author_sort Song, Yipei
collection PubMed
description Tissue segmentation of histology whole-slide images (WSI) remains a critical task in automated digital pathology workflows for both accurate disease diagnosis and deep phenotyping for research purposes. This is especially challenging when the tissue structure of biospecimens is relatively porous and heterogeneous, such as for atherosclerotic plaques. In this study, we developed a unique approach called ‘EntropyMasker’ based on image entropy to tackle the fore- and background segmentation (masking) task in histology WSI. We evaluated our method on 97 high-resolution WSI of human carotid atherosclerotic plaques in the Athero-Express Biobank Study, constituting hematoxylin and eosin and 8 other staining types. Using multiple benchmarking metrics, we compared our method with four widely used segmentation methods: Otsu’s method, Adaptive mean, Adaptive Gaussian and slideMask and observed that our method had the highest sensitivity and Jaccard similarity index. We envision EntropyMasker to fill an important gap in WSI preprocessing, machine learning image analysis pipelines, and enable disease phenotyping beyond the field of atherosclerosis.
format Online
Article
Text
id pubmed-10017682
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100176822023-03-17 An automatic entropy method to efficiently mask histology whole-slide images Song, Yipei Cisternino, Francesco Mekke, Joost M. de Borst, Gert J. de Kleijn, Dominique P. V. Pasterkamp, Gerard Vink, Aryan Glastonbury, Craig A. van der Laan, Sander W. Miller, Clint L. Sci Rep Article Tissue segmentation of histology whole-slide images (WSI) remains a critical task in automated digital pathology workflows for both accurate disease diagnosis and deep phenotyping for research purposes. This is especially challenging when the tissue structure of biospecimens is relatively porous and heterogeneous, such as for atherosclerotic plaques. In this study, we developed a unique approach called ‘EntropyMasker’ based on image entropy to tackle the fore- and background segmentation (masking) task in histology WSI. We evaluated our method on 97 high-resolution WSI of human carotid atherosclerotic plaques in the Athero-Express Biobank Study, constituting hematoxylin and eosin and 8 other staining types. Using multiple benchmarking metrics, we compared our method with four widely used segmentation methods: Otsu’s method, Adaptive mean, Adaptive Gaussian and slideMask and observed that our method had the highest sensitivity and Jaccard similarity index. We envision EntropyMasker to fill an important gap in WSI preprocessing, machine learning image analysis pipelines, and enable disease phenotyping beyond the field of atherosclerosis. Nature Publishing Group UK 2023-03-15 /pmc/articles/PMC10017682/ /pubmed/36922520 http://dx.doi.org/10.1038/s41598-023-29638-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Song, Yipei
Cisternino, Francesco
Mekke, Joost M.
de Borst, Gert J.
de Kleijn, Dominique P. V.
Pasterkamp, Gerard
Vink, Aryan
Glastonbury, Craig A.
van der Laan, Sander W.
Miller, Clint L.
An automatic entropy method to efficiently mask histology whole-slide images
title An automatic entropy method to efficiently mask histology whole-slide images
title_full An automatic entropy method to efficiently mask histology whole-slide images
title_fullStr An automatic entropy method to efficiently mask histology whole-slide images
title_full_unstemmed An automatic entropy method to efficiently mask histology whole-slide images
title_short An automatic entropy method to efficiently mask histology whole-slide images
title_sort automatic entropy method to efficiently mask histology whole-slide images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017682/
https://www.ncbi.nlm.nih.gov/pubmed/36922520
http://dx.doi.org/10.1038/s41598-023-29638-1
work_keys_str_mv AT songyipei anautomaticentropymethodtoefficientlymaskhistologywholeslideimages
AT cisterninofrancesco anautomaticentropymethodtoefficientlymaskhistologywholeslideimages
AT mekkejoostm anautomaticentropymethodtoefficientlymaskhistologywholeslideimages
AT deborstgertj anautomaticentropymethodtoefficientlymaskhistologywholeslideimages
AT dekleijndominiquepv anautomaticentropymethodtoefficientlymaskhistologywholeslideimages
AT pasterkampgerard anautomaticentropymethodtoefficientlymaskhistologywholeslideimages
AT vinkaryan anautomaticentropymethodtoefficientlymaskhistologywholeslideimages
AT glastonburycraiga anautomaticentropymethodtoefficientlymaskhistologywholeslideimages
AT vanderlaansanderw anautomaticentropymethodtoefficientlymaskhistologywholeslideimages
AT millerclintl anautomaticentropymethodtoefficientlymaskhistologywholeslideimages
AT songyipei automaticentropymethodtoefficientlymaskhistologywholeslideimages
AT cisterninofrancesco automaticentropymethodtoefficientlymaskhistologywholeslideimages
AT mekkejoostm automaticentropymethodtoefficientlymaskhistologywholeslideimages
AT deborstgertj automaticentropymethodtoefficientlymaskhistologywholeslideimages
AT dekleijndominiquepv automaticentropymethodtoefficientlymaskhistologywholeslideimages
AT pasterkampgerard automaticentropymethodtoefficientlymaskhistologywholeslideimages
AT vinkaryan automaticentropymethodtoefficientlymaskhistologywholeslideimages
AT glastonburycraiga automaticentropymethodtoefficientlymaskhistologywholeslideimages
AT vanderlaansanderw automaticentropymethodtoefficientlymaskhistologywholeslideimages
AT millerclintl automaticentropymethodtoefficientlymaskhistologywholeslideimages