Cargando…
Herbivore assemblages affect soil microbial communities by altering root biomass and available nutrients in an alpine meadow
Three different herbivore grazing assemblages, namely, yak grazing (YG), Tibetan sheep grazing (SG) and yak and Tibetan sheep co-grazing (MG), are practiced in alpine meadows on the Qinghai-Tibetan Plateau (QTP), but the effects of the different herbivore assemblages on soil microbes are relatively...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017739/ https://www.ncbi.nlm.nih.gov/pubmed/36938013 http://dx.doi.org/10.3389/fpls.2023.1117372 |
_version_ | 1784907656258912256 |
---|---|
author | Liu, Yuzhen Zhao, Xinquan Liu, Wenting Yang, Xiaoxia Feng, Bin Zhang, Chunping Yu, Yang Cao, Quan Sun, Shengnan Degen, A. Allan Shang, Zhanhuan Dong, Quanmin |
author_facet | Liu, Yuzhen Zhao, Xinquan Liu, Wenting Yang, Xiaoxia Feng, Bin Zhang, Chunping Yu, Yang Cao, Quan Sun, Shengnan Degen, A. Allan Shang, Zhanhuan Dong, Quanmin |
author_sort | Liu, Yuzhen |
collection | PubMed |
description | Three different herbivore grazing assemblages, namely, yak grazing (YG), Tibetan sheep grazing (SG) and yak and Tibetan sheep co-grazing (MG), are practiced in alpine meadows on the Qinghai-Tibetan Plateau (QTP), but the effects of the different herbivore assemblages on soil microbes are relatively unknown. The microbial community plays an important role in the functional stability of alpine grassland ecosystems. Therefore, it is important to understand how the microbial community structure of grassland ecosystems changes under different herbivore grazing assemblages to ensure their sustainable development. To fill this gap, a field study was carried out to investigate the effects of YG, SG, and MG on plant communities, soil physico-chemical properties and microbial communities under moderate grazing intensity in alpine meadows. Grazing increased the β-diversity of the bacteria community and decreased the β-diversity of the fungal community. The herbivore assemblage affected the microbial community diversity, but not the plant community diversity. Total phosphorus, soil bulk density, root biomass, and plant α-diversity were correlated with both the bacterial and fungal community composition, available phosphorus and soil moisture were correlated only with the bacterial community composition, while available potassium and above-ground net primary production (ANPP) were correlated only with the fungal community composition. Soil available nitrogen, soil available phosphorus and soil bulk density were highest in SG, while ANPP was highest in MG. It was concluded that MG can improve ANPP and stabilize the soil microbial community, suggesting that MG is an effective method for sustainable use and conservation of alpine meadows on the QTP. |
format | Online Article Text |
id | pubmed-10017739 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100177392023-03-17 Herbivore assemblages affect soil microbial communities by altering root biomass and available nutrients in an alpine meadow Liu, Yuzhen Zhao, Xinquan Liu, Wenting Yang, Xiaoxia Feng, Bin Zhang, Chunping Yu, Yang Cao, Quan Sun, Shengnan Degen, A. Allan Shang, Zhanhuan Dong, Quanmin Front Plant Sci Plant Science Three different herbivore grazing assemblages, namely, yak grazing (YG), Tibetan sheep grazing (SG) and yak and Tibetan sheep co-grazing (MG), are practiced in alpine meadows on the Qinghai-Tibetan Plateau (QTP), but the effects of the different herbivore assemblages on soil microbes are relatively unknown. The microbial community plays an important role in the functional stability of alpine grassland ecosystems. Therefore, it is important to understand how the microbial community structure of grassland ecosystems changes under different herbivore grazing assemblages to ensure their sustainable development. To fill this gap, a field study was carried out to investigate the effects of YG, SG, and MG on plant communities, soil physico-chemical properties and microbial communities under moderate grazing intensity in alpine meadows. Grazing increased the β-diversity of the bacteria community and decreased the β-diversity of the fungal community. The herbivore assemblage affected the microbial community diversity, but not the plant community diversity. Total phosphorus, soil bulk density, root biomass, and plant α-diversity were correlated with both the bacterial and fungal community composition, available phosphorus and soil moisture were correlated only with the bacterial community composition, while available potassium and above-ground net primary production (ANPP) were correlated only with the fungal community composition. Soil available nitrogen, soil available phosphorus and soil bulk density were highest in SG, while ANPP was highest in MG. It was concluded that MG can improve ANPP and stabilize the soil microbial community, suggesting that MG is an effective method for sustainable use and conservation of alpine meadows on the QTP. Frontiers Media S.A. 2023-03-02 /pmc/articles/PMC10017739/ /pubmed/36938013 http://dx.doi.org/10.3389/fpls.2023.1117372 Text en Copyright © 2023 Liu, Zhao, Liu, Yang, Feng, Zhang, Yu, Cao, Sun, Degen, Shang and Dong https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Liu, Yuzhen Zhao, Xinquan Liu, Wenting Yang, Xiaoxia Feng, Bin Zhang, Chunping Yu, Yang Cao, Quan Sun, Shengnan Degen, A. Allan Shang, Zhanhuan Dong, Quanmin Herbivore assemblages affect soil microbial communities by altering root biomass and available nutrients in an alpine meadow |
title | Herbivore assemblages affect soil microbial communities by altering root biomass and available nutrients in an alpine meadow |
title_full | Herbivore assemblages affect soil microbial communities by altering root biomass and available nutrients in an alpine meadow |
title_fullStr | Herbivore assemblages affect soil microbial communities by altering root biomass and available nutrients in an alpine meadow |
title_full_unstemmed | Herbivore assemblages affect soil microbial communities by altering root biomass and available nutrients in an alpine meadow |
title_short | Herbivore assemblages affect soil microbial communities by altering root biomass and available nutrients in an alpine meadow |
title_sort | herbivore assemblages affect soil microbial communities by altering root biomass and available nutrients in an alpine meadow |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017739/ https://www.ncbi.nlm.nih.gov/pubmed/36938013 http://dx.doi.org/10.3389/fpls.2023.1117372 |
work_keys_str_mv | AT liuyuzhen herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT zhaoxinquan herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT liuwenting herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT yangxiaoxia herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT fengbin herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT zhangchunping herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT yuyang herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT caoquan herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT sunshengnan herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT degenaallan herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT shangzhanhuan herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow AT dongquanmin herbivoreassemblagesaffectsoilmicrobialcommunitiesbyalteringrootbiomassandavailablenutrientsinanalpinemeadow |