Cargando…

Development of a nomogram for predicting pathological complete response in luminal breast cancer patients following neoadjuvant chemotherapy

BACKGROUND: Given the low chance of response to neoadjuvant chemotherapy (NACT) in luminal breast cancer (LBC), the identification of predictive factors of pathological complete response (pCR) represents a challenge. A multicenter retrospective analysis was performed to develop and validate a predic...

Descripción completa

Detalles Bibliográficos
Autores principales: Garufi, Giovanna, Carbognin, Luisa, Sperduti, Isabella, Miglietta, Federica, Dieci, Maria Vittoria, Mazzeo, Roberta, Orlandi, Armando, Gerratana, Lorenzo, Palazzo, Antonella, Fabi, Alessandra, Paris, Ida, Franco, Antonio, Franceschini, Gianluca, Fiorio, Elena, Pilotto, Sara, Guarneri, Valentina, Puglisi, Fabio, Conte, Pierfranco, Milella, Michele, Scambia, Giovanni, Tortora, Giampaolo, Bria, Emilio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017935/
https://www.ncbi.nlm.nih.gov/pubmed/36936199
http://dx.doi.org/10.1177/17588359221138657
_version_ 1784907700194246656
author Garufi, Giovanna
Carbognin, Luisa
Sperduti, Isabella
Miglietta, Federica
Dieci, Maria Vittoria
Mazzeo, Roberta
Orlandi, Armando
Gerratana, Lorenzo
Palazzo, Antonella
Fabi, Alessandra
Paris, Ida
Franco, Antonio
Franceschini, Gianluca
Fiorio, Elena
Pilotto, Sara
Guarneri, Valentina
Puglisi, Fabio
Conte, Pierfranco
Milella, Michele
Scambia, Giovanni
Tortora, Giampaolo
Bria, Emilio
author_facet Garufi, Giovanna
Carbognin, Luisa
Sperduti, Isabella
Miglietta, Federica
Dieci, Maria Vittoria
Mazzeo, Roberta
Orlandi, Armando
Gerratana, Lorenzo
Palazzo, Antonella
Fabi, Alessandra
Paris, Ida
Franco, Antonio
Franceschini, Gianluca
Fiorio, Elena
Pilotto, Sara
Guarneri, Valentina
Puglisi, Fabio
Conte, Pierfranco
Milella, Michele
Scambia, Giovanni
Tortora, Giampaolo
Bria, Emilio
author_sort Garufi, Giovanna
collection PubMed
description BACKGROUND: Given the low chance of response to neoadjuvant chemotherapy (NACT) in luminal breast cancer (LBC), the identification of predictive factors of pathological complete response (pCR) represents a challenge. A multicenter retrospective analysis was performed to develop and validate a predictive nomogram for pCR, based on pre-treatment clinicopathological features. METHODS: Clinicopathological data from stage I–III LBC patients undergone NACT and surgery were retrospectively collected. Descriptive statistics was adopted. A multivariate model was used to identify independent predictors of pCR. The obtained log-odds ratios (ORs) were adopted to derive weighting factors for the predictive nomogram. The receiver operating characteristic analysis was applied to determine the nomogram accuracy. The model was internally and externally validated. RESULTS: In the training set, data from 539 patients were gathered: pCR rate was 11.3% [95% confidence interval (CI): 8.6–13.9] (luminal A-like: 5.3%, 95% CI: 1.5–9.1, and luminal B-like: 13.1%, 95% CI: 9.8–13.4). The optimal Ki67 cutoff to predict pCR was 44% (area under the curve (AUC): 0.69; p < 0.001). Clinical stage I–II (OR: 3.67, 95% CI: 1.75–7.71, p = 0.001), Ki67 ⩾44% (OR: 3.00, 95% CI: 1.59–5.65, p = 0.001), and progesterone receptor (PR) <1% (OR: 2.49, 95% CI: 1.15–5.38, p = 0.019) were independent predictors of pCR, with high replication rates at internal validation (100%, 98%, and 87%, respectively). According to the nomogram, the probability of pCR ranged from 3.4% for clinical stage III, PR > 1%, and Ki67 <44% to 53.3% for clinical stage I–II, PR < 1%, and Ki67 ⩾44% (accuracy: AUC, 0.73; p < 0.0001). In the validation set (248 patients), the predictive performance of the model was confirmed (AUC: 0.7; p < 0.0001). CONCLUSION: The combination of commonly available clinicopathological pre-NACT factors allows to develop a nomogram which appears to reliably predict pCR in LBC.
format Online
Article
Text
id pubmed-10017935
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-100179352023-03-17 Development of a nomogram for predicting pathological complete response in luminal breast cancer patients following neoadjuvant chemotherapy Garufi, Giovanna Carbognin, Luisa Sperduti, Isabella Miglietta, Federica Dieci, Maria Vittoria Mazzeo, Roberta Orlandi, Armando Gerratana, Lorenzo Palazzo, Antonella Fabi, Alessandra Paris, Ida Franco, Antonio Franceschini, Gianluca Fiorio, Elena Pilotto, Sara Guarneri, Valentina Puglisi, Fabio Conte, Pierfranco Milella, Michele Scambia, Giovanni Tortora, Giampaolo Bria, Emilio Ther Adv Med Oncol Original Research BACKGROUND: Given the low chance of response to neoadjuvant chemotherapy (NACT) in luminal breast cancer (LBC), the identification of predictive factors of pathological complete response (pCR) represents a challenge. A multicenter retrospective analysis was performed to develop and validate a predictive nomogram for pCR, based on pre-treatment clinicopathological features. METHODS: Clinicopathological data from stage I–III LBC patients undergone NACT and surgery were retrospectively collected. Descriptive statistics was adopted. A multivariate model was used to identify independent predictors of pCR. The obtained log-odds ratios (ORs) were adopted to derive weighting factors for the predictive nomogram. The receiver operating characteristic analysis was applied to determine the nomogram accuracy. The model was internally and externally validated. RESULTS: In the training set, data from 539 patients were gathered: pCR rate was 11.3% [95% confidence interval (CI): 8.6–13.9] (luminal A-like: 5.3%, 95% CI: 1.5–9.1, and luminal B-like: 13.1%, 95% CI: 9.8–13.4). The optimal Ki67 cutoff to predict pCR was 44% (area under the curve (AUC): 0.69; p < 0.001). Clinical stage I–II (OR: 3.67, 95% CI: 1.75–7.71, p = 0.001), Ki67 ⩾44% (OR: 3.00, 95% CI: 1.59–5.65, p = 0.001), and progesterone receptor (PR) <1% (OR: 2.49, 95% CI: 1.15–5.38, p = 0.019) were independent predictors of pCR, with high replication rates at internal validation (100%, 98%, and 87%, respectively). According to the nomogram, the probability of pCR ranged from 3.4% for clinical stage III, PR > 1%, and Ki67 <44% to 53.3% for clinical stage I–II, PR < 1%, and Ki67 ⩾44% (accuracy: AUC, 0.73; p < 0.0001). In the validation set (248 patients), the predictive performance of the model was confirmed (AUC: 0.7; p < 0.0001). CONCLUSION: The combination of commonly available clinicopathological pre-NACT factors allows to develop a nomogram which appears to reliably predict pCR in LBC. SAGE Publications 2023-03-14 /pmc/articles/PMC10017935/ /pubmed/36936199 http://dx.doi.org/10.1177/17588359221138657 Text en © The Author(s), 2023 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research
Garufi, Giovanna
Carbognin, Luisa
Sperduti, Isabella
Miglietta, Federica
Dieci, Maria Vittoria
Mazzeo, Roberta
Orlandi, Armando
Gerratana, Lorenzo
Palazzo, Antonella
Fabi, Alessandra
Paris, Ida
Franco, Antonio
Franceschini, Gianluca
Fiorio, Elena
Pilotto, Sara
Guarneri, Valentina
Puglisi, Fabio
Conte, Pierfranco
Milella, Michele
Scambia, Giovanni
Tortora, Giampaolo
Bria, Emilio
Development of a nomogram for predicting pathological complete response in luminal breast cancer patients following neoadjuvant chemotherapy
title Development of a nomogram for predicting pathological complete response in luminal breast cancer patients following neoadjuvant chemotherapy
title_full Development of a nomogram for predicting pathological complete response in luminal breast cancer patients following neoadjuvant chemotherapy
title_fullStr Development of a nomogram for predicting pathological complete response in luminal breast cancer patients following neoadjuvant chemotherapy
title_full_unstemmed Development of a nomogram for predicting pathological complete response in luminal breast cancer patients following neoadjuvant chemotherapy
title_short Development of a nomogram for predicting pathological complete response in luminal breast cancer patients following neoadjuvant chemotherapy
title_sort development of a nomogram for predicting pathological complete response in luminal breast cancer patients following neoadjuvant chemotherapy
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017935/
https://www.ncbi.nlm.nih.gov/pubmed/36936199
http://dx.doi.org/10.1177/17588359221138657
work_keys_str_mv AT garufigiovanna developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT carbogninluisa developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT sperdutiisabella developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT migliettafederica developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT diecimariavittoria developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT mazzeoroberta developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT orlandiarmando developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT gerratanalorenzo developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT palazzoantonella developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT fabialessandra developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT parisida developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT francoantonio developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT franceschinigianluca developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT fiorioelena developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT pilottosara developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT guarnerivalentina developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT puglisifabio developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT contepierfranco developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT milellamichele developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT scambiagiovanni developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT tortoragiampaolo developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy
AT briaemilio developmentofanomogramforpredictingpathologicalcompleteresponseinluminalbreastcancerpatientsfollowingneoadjuvantchemotherapy