Cargando…
NuSegDA: Domain adaptation for nuclei segmentation
The accurate segmentation of nuclei is crucial for cancer diagnosis and further clinical treatments. To successfully train a nuclei segmentation network in a fully-supervised manner for a particular type of organ or cancer, we need the dataset with ground-truth annotations. However, such well-annota...
Autores principales: | Haq, Mohammad Minhazul, Ma, Hehuan, Huang, Junzhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018010/ https://www.ncbi.nlm.nih.gov/pubmed/36936996 http://dx.doi.org/10.3389/fdata.2023.1108659 |
Ejemplares similares
-
Fair classification via domain adaptation: A dual adversarial learning approach
por: Liang, Yueqing, et al.
Publicado: (2023) -
Unsupervised domain adaptation methods for cross-species transfer of regulatory code signals
por: Latyshev, Pavel, et al.
Publicado: (2023) -
3D bi-directional transformer U-Net for medical image segmentation
por: Fu, Xiyao, et al.
Publicado: (2023) -
A proposed scenario to improve the Ncut algorithm in segmentation
por: Tran, Nhu Y., et al.
Publicado: (2023) -
Wasserstein Uncertainty Estimation for Adversarial Domain Matching
por: Wang, Rui, et al.
Publicado: (2022)