Cargando…
Risk factors based vessel‐specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry
BACKGROUND AND HYPOTHESIS: The recently introduced Bayesian quantile regression (BQR) machine‐learning method enables comprehensive analyzing the relationship among complex clinical variables. We analyzed the relationship between multiple cardiovascular (CV) risk factors and different stages of coro...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018106/ https://www.ncbi.nlm.nih.gov/pubmed/36691990 http://dx.doi.org/10.1002/clc.23964 |
_version_ | 1784907740701786112 |
---|---|
author | Park, Hyung‐Bok Lee, Jina Hong, Yongtaek Byungchang, So Kim, Wonse Lee, Byoung K. Lin, Fay Y. Hadamitzky, Martin Kim, Yong‐Jin Conte, Edoardo Andreini, Daniele Pontone, Gianluca Budoff, Matthew J. Gottlieb, Ilan Chun, Eun Ju Cademartiri, Filippo Maffei, Erica Marques, Hugo Gonçalves, Pedro de A. Leipsic, Jonathon A. Shin, Sanghoon Choi, Jung H. Virmani, Renu Samady, Habib Chinnaiyan, Kavitha Stone, Peter H. Berman, Daniel S. Narula, Jagat Shaw, Leslee J. Bax, Jeroen J. Min, James K. Kook, Woong Chang, Hyuk‐Jae |
author_facet | Park, Hyung‐Bok Lee, Jina Hong, Yongtaek Byungchang, So Kim, Wonse Lee, Byoung K. Lin, Fay Y. Hadamitzky, Martin Kim, Yong‐Jin Conte, Edoardo Andreini, Daniele Pontone, Gianluca Budoff, Matthew J. Gottlieb, Ilan Chun, Eun Ju Cademartiri, Filippo Maffei, Erica Marques, Hugo Gonçalves, Pedro de A. Leipsic, Jonathon A. Shin, Sanghoon Choi, Jung H. Virmani, Renu Samady, Habib Chinnaiyan, Kavitha Stone, Peter H. Berman, Daniel S. Narula, Jagat Shaw, Leslee J. Bax, Jeroen J. Min, James K. Kook, Woong Chang, Hyuk‐Jae |
author_sort | Park, Hyung‐Bok |
collection | PubMed |
description | BACKGROUND AND HYPOTHESIS: The recently introduced Bayesian quantile regression (BQR) machine‐learning method enables comprehensive analyzing the relationship among complex clinical variables. We analyzed the relationship between multiple cardiovascular (CV) risk factors and different stages of coronary artery disease (CAD) using the BQR model in a vessel‐specific manner. METHODS: From the data of 1,463 patients obtained from the PARADIGM (NCT02803411) registry, we analyzed the lumen diameter stenosis (DS) of the three vessels: left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA). Two models for predicting DS and DS changes were developed. Baseline CV risk factors, symptoms, and laboratory test results were used as the inputs. The conditional 10%, 25%, 50%, 75%, and 90% quantile functions of the maximum DS and DS change of the three vessels were estimated using the BQR model. RESULTS: The 90th percentiles of the DS of the three vessels and their maximum DS change were 41%–50% and 5.6%–7.3%, respectively. Typical anginal symptoms were associated with the highest quantile (90%) of DS in the LAD; diabetes with higher quantiles (75% and 90%) of DS in the LCx; dyslipidemia with the highest quantile (90%) of DS in the RCA; and shortness of breath showed some association with the LCx and RCA. Interestingly, High‐density lipoprotein cholesterol showed a dynamic association along DS change in the per‐patient analysis. CONCLUSIONS: This study demonstrates the clinical utility of the BQR model for evaluating the comprehensive relationship between risk factors and baseline‐grade CAD and its progression. |
format | Online Article Text |
id | pubmed-10018106 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100181062023-03-17 Risk factors based vessel‐specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry Park, Hyung‐Bok Lee, Jina Hong, Yongtaek Byungchang, So Kim, Wonse Lee, Byoung K. Lin, Fay Y. Hadamitzky, Martin Kim, Yong‐Jin Conte, Edoardo Andreini, Daniele Pontone, Gianluca Budoff, Matthew J. Gottlieb, Ilan Chun, Eun Ju Cademartiri, Filippo Maffei, Erica Marques, Hugo Gonçalves, Pedro de A. Leipsic, Jonathon A. Shin, Sanghoon Choi, Jung H. Virmani, Renu Samady, Habib Chinnaiyan, Kavitha Stone, Peter H. Berman, Daniel S. Narula, Jagat Shaw, Leslee J. Bax, Jeroen J. Min, James K. Kook, Woong Chang, Hyuk‐Jae Clin Cardiol Clinical Trial BACKGROUND AND HYPOTHESIS: The recently introduced Bayesian quantile regression (BQR) machine‐learning method enables comprehensive analyzing the relationship among complex clinical variables. We analyzed the relationship between multiple cardiovascular (CV) risk factors and different stages of coronary artery disease (CAD) using the BQR model in a vessel‐specific manner. METHODS: From the data of 1,463 patients obtained from the PARADIGM (NCT02803411) registry, we analyzed the lumen diameter stenosis (DS) of the three vessels: left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA). Two models for predicting DS and DS changes were developed. Baseline CV risk factors, symptoms, and laboratory test results were used as the inputs. The conditional 10%, 25%, 50%, 75%, and 90% quantile functions of the maximum DS and DS change of the three vessels were estimated using the BQR model. RESULTS: The 90th percentiles of the DS of the three vessels and their maximum DS change were 41%–50% and 5.6%–7.3%, respectively. Typical anginal symptoms were associated with the highest quantile (90%) of DS in the LAD; diabetes with higher quantiles (75% and 90%) of DS in the LCx; dyslipidemia with the highest quantile (90%) of DS in the RCA; and shortness of breath showed some association with the LCx and RCA. Interestingly, High‐density lipoprotein cholesterol showed a dynamic association along DS change in the per‐patient analysis. CONCLUSIONS: This study demonstrates the clinical utility of the BQR model for evaluating the comprehensive relationship between risk factors and baseline‐grade CAD and its progression. John Wiley and Sons Inc. 2023-01-24 /pmc/articles/PMC10018106/ /pubmed/36691990 http://dx.doi.org/10.1002/clc.23964 Text en © 2023 The Authors. Clinical Cardiology published by Wiley Periodicals, LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Clinical Trial Park, Hyung‐Bok Lee, Jina Hong, Yongtaek Byungchang, So Kim, Wonse Lee, Byoung K. Lin, Fay Y. Hadamitzky, Martin Kim, Yong‐Jin Conte, Edoardo Andreini, Daniele Pontone, Gianluca Budoff, Matthew J. Gottlieb, Ilan Chun, Eun Ju Cademartiri, Filippo Maffei, Erica Marques, Hugo Gonçalves, Pedro de A. Leipsic, Jonathon A. Shin, Sanghoon Choi, Jung H. Virmani, Renu Samady, Habib Chinnaiyan, Kavitha Stone, Peter H. Berman, Daniel S. Narula, Jagat Shaw, Leslee J. Bax, Jeroen J. Min, James K. Kook, Woong Chang, Hyuk‐Jae Risk factors based vessel‐specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry |
title | Risk factors based vessel‐specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry |
title_full | Risk factors based vessel‐specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry |
title_fullStr | Risk factors based vessel‐specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry |
title_full_unstemmed | Risk factors based vessel‐specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry |
title_short | Risk factors based vessel‐specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry |
title_sort | risk factors based vessel‐specific prediction for stages of coronary artery disease using bayesian quantile regression machine learning method: results from the paradigm registry |
topic | Clinical Trial |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018106/ https://www.ncbi.nlm.nih.gov/pubmed/36691990 http://dx.doi.org/10.1002/clc.23964 |
work_keys_str_mv | AT parkhyungbok riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT leejina riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT hongyongtaek riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT byungchangso riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT kimwonse riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT leebyoungk riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT linfayy riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT hadamitzkymartin riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT kimyongjin riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT conteedoardo riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT andreinidaniele riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT pontonegianluca riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT budoffmatthewj riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT gottliebilan riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT chuneunju riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT cademartirifilippo riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT maffeierica riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT marqueshugo riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT goncalvespedrodea riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT leipsicjonathona riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT shinsanghoon riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT choijungh riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT virmanirenu riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT samadyhabib riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT chinnaiyankavitha riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT stonepeterh riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT bermandaniels riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT narulajagat riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT shawlesleej riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT baxjeroenj riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT minjamesk riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT kookwoong riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry AT changhyukjae riskfactorsbasedvesselspecificpredictionforstagesofcoronaryarterydiseaseusingbayesianquantileregressionmachinelearningmethodresultsfromtheparadigmregistry |