Cargando…
3D deep convolution neural network for radiation pneumonitis prediction following stereotactic body radiotherapy
In this study, we investigated 3D convolutional neural networks (CNNs) with input from radiographic and dosimetric datasets of primary lung tumors and surrounding lung volumes to predict the likelihood of radiation pneumonitis (RP). Pre‐treatment, 3‐ and 6‐month follow‐up computed tomography (CT) an...
Autores principales: | Kapoor, Rishabh, Sleeman, William, Palta, Jatinder, Weiss, Elisabeth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018674/ https://www.ncbi.nlm.nih.gov/pubmed/36546583 http://dx.doi.org/10.1002/acm2.13875 |
Ejemplares similares
-
Infrastructure tools to support an effective Radiation Oncology Learning Health System
por: Kapoor, Rishabh, et al.
Publicado: (2023) -
Multi-View Data Integration Methods for Radiotherapy Structure Name Standardization
por: Syed, Khajamoinuddin, et al.
Publicado: (2021) -
Automatic Incident Triage in Radiation Oncology Incident Learning System
por: Syed, Khajamoinuddin, et al.
Publicado: (2020) -
Correlation of dosimetric factors with the development of symptomatic radiation pneumonitis in stereotactic body radiotherapy
por: Ryckman, Jeffrey M., et al.
Publicado: (2020) -
Stereotactic body radiotherapy for bone oligometastatic disease in prostate cancer
por: Patel, Priyanka H., et al.
Publicado: (2019)