Cargando…
Review on Some Confusion Produced by the Bicontinuous Microemulsion Terminology and Its Domains Microcurvature: A Simple Spatiotemporal Model at Optimum Formulation of Surfactant-Oil-Water Systems
[Image: see text] Fundamental studies have improved understanding of molecular-level properties and behavior in surfactant-oil-water (SOW) systems at equilibrium and under nonequilibrium conditions. However, confusion persists regarding the terms “microemulsion” and “curvature” in these systems. Mic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018710/ https://www.ncbi.nlm.nih.gov/pubmed/36936277 http://dx.doi.org/10.1021/acsomega.3c00547 |
Sumario: | [Image: see text] Fundamental studies have improved understanding of molecular-level properties and behavior in surfactant-oil-water (SOW) systems at equilibrium and under nonequilibrium conditions. However, confusion persists regarding the terms “microemulsion” and “curvature” in these systems. Microemulsion refers to a single-phase system that does not contain distinct oil or water droplets but at least four different structures with globular domains of nanometer size and sometimes arbitrary shape. The significance of “curvature” in such systems is unclear. At high surfactant concentrations (typically 30 wt % or more), a single phase zone has been identified in which complex molecular arrangements may result in light scattering. As surfactant concentration decreases, the single phase is referred to as a bicontinuous microemulsion, known as the middle phase in a Winsor III triphasic system. Its structure has been described as involving simple or multiple surfactant films surrounding more or less elongated excess oil and water phase globules. In cases where the system separates into two or three phases, known as Winsor I or II systems, one of the phases, containing most of the surfactant, is also confusedly referred to as the microemulsion. In this surfactant-rich phase, the only curved objects are micellar size structures that are soluble in the system and have no real interface but rather exchange surfactant molecules with the external liquid phase at an ultrafast pace. The use of the term “curvature” in the context of these complex microemulsion systems is confusing, particularly when applied to merged nanometer-size globular or percolating domains. In this work, we discuss the terms “microemulsion” and “curvature”, and the most simple four-dimensional spatiotemporal model is proposed concerning SOW equilibrated systems near the optimum formulation. This model explains the motion of surfactant molecules due to Brownian movement, which is a quick and arbitrary thermal fluctuation, and limited to a short distance. The resulting observation and behavior will be an average in time and in space, leading to a permanent change in the local microcurvature of the aggregate, thus changing the average from micelle-like to inverse micelle-like order over an extremely short time. The term “microcurvature” is used to explain the small variations of globule size and indicates a close-to-zero mean curvature of the surfactant-containing film surface shape. |
---|