Cargando…
Transcriptome profiling reveals characteristics of hairy root and the role of AhGLK1 in response to drought stress and post-drought recovery in peanut
BACKGROUND: HR (hairy root) has emerged as a valuable tissue for the rapid characterization of plant gene function and enzyme activity in vivo. AhGLK1 (Arachis hypogaea L. golden2-like 1) is known to play a role in post-drought recovery. However, it is unclear (a) whether HR has properties that are...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018853/ https://www.ncbi.nlm.nih.gov/pubmed/36927268 http://dx.doi.org/10.1186/s12864-023-09219-2 |
Sumario: | BACKGROUND: HR (hairy root) has emerged as a valuable tissue for the rapid characterization of plant gene function and enzyme activity in vivo. AhGLK1 (Arachis hypogaea L. golden2-like 1) is known to play a role in post-drought recovery. However, it is unclear (a) whether HR has properties that are distinct from those of PR (primary root); and (b) which gene networks are regulated by AhGLK1 in response to drought stress and recovery in peanut. RESULTS: We found that cells of the root tip cortex were larger in HR than in PR, while a total of 850 differentially expressed genes (DEGs) were identified in HR compared to PR. Eighty-eight of these DEGs, relating to chlorophyll and photosynthesis, were upregulated in HR. In addition, AhGLK1-OX (AhGLK1-overexpressing) HR showed a green phenotype, and had a higher relative water content than 35 S::eGFP (control) HR during drought stress. RNA-seq analysis showed that 74 DEGs involved both in the drought response and the post-drought recovery process were significantly enriched in the galactose metabolism pathway. GO terms enrichment analysis revealed that 59.19%, 29.79% and 17.02% of the DEGs mapped to the ‘biological process’ (BP), ‘molecular function’ (MF) and ‘cellular component’ (CC) domains, respectively. Furthermore, 20 DEGs involved in post-drought recovery were uniquely expressed in AhGLK1-OX HR and were significantly enriched in the porphyrin metabolism pathway. GO analysis showed that 42.42%, 30.30% and 27.28% of DEGs could be assigned to the BP, MF and CC domains, respectively. Transcription factors including bHLH and MYB family members may play a key role during drought stress and recovery. CONCLUSION: Our data reveal that HR has some of the characteristics of leaves, indicating that HR is suitable for studying genes that are mainly expressed in leaves. The RNA-seq results are consistent with previous studies that show chlorophyll synthesis and photosynthesis to be critical for the role of AhGLK1 in improving post-drought recovery growth in peanut. These findings provide in-depth insights that will be of great utility for the exploration of candidate gene functions in relation to drought tolerance and/or post-drought recovery ability in peanut. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09219-2. |
---|