Cargando…
Unsupervised encoding selection through ensemble pruning for biomedical classification
BACKGROUND: Owing to the rising levels of multi-resistant pathogens, antimicrobial peptides, an alternative strategy to classic antibiotics, got more attention. A crucial part is thereby the costly identification and validation. With the ever-growing amount of annotated peptides, researchers leverag...
Autores principales: | Spänig, Sebastian, Michel, Alexander, Heider, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018861/ https://www.ncbi.nlm.nih.gov/pubmed/36927546 http://dx.doi.org/10.1186/s13040-022-00317-7 |
Ejemplares similares
-
A large-scale comparative study on peptide encodings for biomedical classification
por: Spänig, Sebastian, et al.
Publicado: (2021) -
Encodings and models for antimicrobial peptide classification for multi-resistant pathogens
por: Spänig, Sebastian, et al.
Publicado: (2019) -
A parametric approach for molecular encodings using multilevel atomic neighborhoods applied to peptide classification
por: Hattab, Georges, et al.
Publicado: (2023) -
Biomedical Text Categorization Based on Ensemble Pruning and Optimized Topic Modelling
por: Onan, Aytuğ
Publicado: (2018) -
Margin-Based Pareto Ensemble Pruning: An Ensemble Pruning Algorithm That Learns to Search Optimized Ensembles
por: Hu, Ruihan, et al.
Publicado: (2019)