Cargando…
Correction: Machine learning-based normal tissue complication probability model for predicting albumin-bilirubin (ALBI) grade increase in hepatocellular carcinoma patients
Autores principales: | Prayongrat, Anussara, Srimaneekarn, Natchalee, Thonglert, Kanokporn, Khorprasert, Chonlakiet, Amornwichet, Napapat, Alisanant, Petch, Shirato, Hiroki, Kobashi, Keiji, Sriswasdi, Sira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018974/ https://www.ncbi.nlm.nih.gov/pubmed/36922889 http://dx.doi.org/10.1186/s13014-023-02212-9 |
Ejemplares similares
-
Machine learning-based normal tissue complication probability model for predicting albumin-bilirubin (ALBI) grade increase in hepatocellular carcinoma patients
por: Prayongrat, Anussara, et al.
Publicado: (2022) -
Assessment of the confidence interval in the multivariable normal tissue complication probability model for predicting radiation-induced liver disease in primary liver cancer
por: Prayongrat, Anussara, et al.
Publicado: (2021) -
Advanced radiotherapy technique in hepatocellular carcinoma with portal vein thrombosis: Feasibility and clinical outcomes
por: Khorprasert, Chonlakiet, et al.
Publicado: (2021) -
Flattening filter free stereotactic body radiation therapy for lung tumors: outcomes and predictive factors
por: Jaruthien, Thitiporn, et al.
Publicado: (2021) -
Development and validation of a prognostic prediction model including the minor lymphatic pathway for distant metastases in cervical cancer patients
por: Thephamongkhol, Kullathorn, et al.
Publicado: (2022)