Cargando…

Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222

Photoreceptors containing the light‐oxygen‐voltage (LOV) domain elicit biological responses upon excitation of their flavin mononucleotide (FMN) chromophore by blue light. The mechanism and kinetics of dark‐state recovery are not well understood. Here we incorporated the non‐canonical amino acid p‐c...

Descripción completa

Detalles Bibliográficos
Autores principales: Chaudhari, Aditya S., Chatterjee, Aditi, Domingos, Catarina A. O., Andrikopoulos, Prokopis C., Liu, Yingliang, Andersson, Inger, Schneider, Bohdan, Lórenz‐Fonfría, Víctor A., Fuertes, Gustavo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019195/
https://www.ncbi.nlm.nih.gov/pubmed/36764820
http://dx.doi.org/10.1002/pro.4590
_version_ 1784907976486682624
author Chaudhari, Aditya S.
Chatterjee, Aditi
Domingos, Catarina A. O.
Andrikopoulos, Prokopis C.
Liu, Yingliang
Andersson, Inger
Schneider, Bohdan
Lórenz‐Fonfría, Víctor A.
Fuertes, Gustavo
author_facet Chaudhari, Aditya S.
Chatterjee, Aditi
Domingos, Catarina A. O.
Andrikopoulos, Prokopis C.
Liu, Yingliang
Andersson, Inger
Schneider, Bohdan
Lórenz‐Fonfría, Víctor A.
Fuertes, Gustavo
author_sort Chaudhari, Aditya S.
collection PubMed
description Photoreceptors containing the light‐oxygen‐voltage (LOV) domain elicit biological responses upon excitation of their flavin mononucleotide (FMN) chromophore by blue light. The mechanism and kinetics of dark‐state recovery are not well understood. Here we incorporated the non‐canonical amino acid p‐cyanophenylalanine (CNF) by genetic code expansion technology at 45 positions of the bacterial transcription factor EL222. Screening of light‐induced changes in infrared (IR) absorption frequency, electric field and hydration of the nitrile groups identified residues CNF31 and CNF35 as reporters of monomer/oligomer and caged/decaged equilibria, respectively. Time‐resolved multi‐probe UV/visible and IR spectroscopy experiments of the lit‐to‐dark transition revealed four dynamical events. Predominantly, rearrangements around the A'α helix interface (CNF31 and CNF35) precede FMN‐cysteinyl adduct scission, folding of α‐helices (amide bands), and relaxation of residue CNF151. This study illustrates the importance of characterizing all parts of a protein and suggests a key role for the N‐terminal A'α extension of the LOV domain in controlling EL222 photocycle length.
format Online
Article
Text
id pubmed-10019195
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-100191952023-04-01 Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222 Chaudhari, Aditya S. Chatterjee, Aditi Domingos, Catarina A. O. Andrikopoulos, Prokopis C. Liu, Yingliang Andersson, Inger Schneider, Bohdan Lórenz‐Fonfría, Víctor A. Fuertes, Gustavo Protein Sci Full‐length Papers Photoreceptors containing the light‐oxygen‐voltage (LOV) domain elicit biological responses upon excitation of their flavin mononucleotide (FMN) chromophore by blue light. The mechanism and kinetics of dark‐state recovery are not well understood. Here we incorporated the non‐canonical amino acid p‐cyanophenylalanine (CNF) by genetic code expansion technology at 45 positions of the bacterial transcription factor EL222. Screening of light‐induced changes in infrared (IR) absorption frequency, electric field and hydration of the nitrile groups identified residues CNF31 and CNF35 as reporters of monomer/oligomer and caged/decaged equilibria, respectively. Time‐resolved multi‐probe UV/visible and IR spectroscopy experiments of the lit‐to‐dark transition revealed four dynamical events. Predominantly, rearrangements around the A'α helix interface (CNF31 and CNF35) precede FMN‐cysteinyl adduct scission, folding of α‐helices (amide bands), and relaxation of residue CNF151. This study illustrates the importance of characterizing all parts of a protein and suggests a key role for the N‐terminal A'α extension of the LOV domain in controlling EL222 photocycle length. John Wiley & Sons, Inc. 2023-04-01 /pmc/articles/PMC10019195/ /pubmed/36764820 http://dx.doi.org/10.1002/pro.4590 Text en © 2023 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Full‐length Papers
Chaudhari, Aditya S.
Chatterjee, Aditi
Domingos, Catarina A. O.
Andrikopoulos, Prokopis C.
Liu, Yingliang
Andersson, Inger
Schneider, Bohdan
Lórenz‐Fonfría, Víctor A.
Fuertes, Gustavo
Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
title Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
title_full Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
title_fullStr Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
title_full_unstemmed Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
title_short Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
title_sort genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in el222
topic Full‐length Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019195/
https://www.ncbi.nlm.nih.gov/pubmed/36764820
http://dx.doi.org/10.1002/pro.4590
work_keys_str_mv AT chaudhariadityas geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222
AT chatterjeeaditi geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222
AT domingoscatarinaao geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222
AT andrikopoulosprokopisc geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222
AT liuyingliang geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222
AT anderssoninger geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222
AT schneiderbohdan geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222
AT lorenzfonfriavictora geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222
AT fuertesgustavo geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222