Cargando…
Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
Photoreceptors containing the light‐oxygen‐voltage (LOV) domain elicit biological responses upon excitation of their flavin mononucleotide (FMN) chromophore by blue light. The mechanism and kinetics of dark‐state recovery are not well understood. Here we incorporated the non‐canonical amino acid p‐c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019195/ https://www.ncbi.nlm.nih.gov/pubmed/36764820 http://dx.doi.org/10.1002/pro.4590 |
_version_ | 1784907976486682624 |
---|---|
author | Chaudhari, Aditya S. Chatterjee, Aditi Domingos, Catarina A. O. Andrikopoulos, Prokopis C. Liu, Yingliang Andersson, Inger Schneider, Bohdan Lórenz‐Fonfría, Víctor A. Fuertes, Gustavo |
author_facet | Chaudhari, Aditya S. Chatterjee, Aditi Domingos, Catarina A. O. Andrikopoulos, Prokopis C. Liu, Yingliang Andersson, Inger Schneider, Bohdan Lórenz‐Fonfría, Víctor A. Fuertes, Gustavo |
author_sort | Chaudhari, Aditya S. |
collection | PubMed |
description | Photoreceptors containing the light‐oxygen‐voltage (LOV) domain elicit biological responses upon excitation of their flavin mononucleotide (FMN) chromophore by blue light. The mechanism and kinetics of dark‐state recovery are not well understood. Here we incorporated the non‐canonical amino acid p‐cyanophenylalanine (CNF) by genetic code expansion technology at 45 positions of the bacterial transcription factor EL222. Screening of light‐induced changes in infrared (IR) absorption frequency, electric field and hydration of the nitrile groups identified residues CNF31 and CNF35 as reporters of monomer/oligomer and caged/decaged equilibria, respectively. Time‐resolved multi‐probe UV/visible and IR spectroscopy experiments of the lit‐to‐dark transition revealed four dynamical events. Predominantly, rearrangements around the A'α helix interface (CNF31 and CNF35) precede FMN‐cysteinyl adduct scission, folding of α‐helices (amide bands), and relaxation of residue CNF151. This study illustrates the importance of characterizing all parts of a protein and suggests a key role for the N‐terminal A'α extension of the LOV domain in controlling EL222 photocycle length. |
format | Online Article Text |
id | pubmed-10019195 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100191952023-04-01 Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222 Chaudhari, Aditya S. Chatterjee, Aditi Domingos, Catarina A. O. Andrikopoulos, Prokopis C. Liu, Yingliang Andersson, Inger Schneider, Bohdan Lórenz‐Fonfría, Víctor A. Fuertes, Gustavo Protein Sci Full‐length Papers Photoreceptors containing the light‐oxygen‐voltage (LOV) domain elicit biological responses upon excitation of their flavin mononucleotide (FMN) chromophore by blue light. The mechanism and kinetics of dark‐state recovery are not well understood. Here we incorporated the non‐canonical amino acid p‐cyanophenylalanine (CNF) by genetic code expansion technology at 45 positions of the bacterial transcription factor EL222. Screening of light‐induced changes in infrared (IR) absorption frequency, electric field and hydration of the nitrile groups identified residues CNF31 and CNF35 as reporters of monomer/oligomer and caged/decaged equilibria, respectively. Time‐resolved multi‐probe UV/visible and IR spectroscopy experiments of the lit‐to‐dark transition revealed four dynamical events. Predominantly, rearrangements around the A'α helix interface (CNF31 and CNF35) precede FMN‐cysteinyl adduct scission, folding of α‐helices (amide bands), and relaxation of residue CNF151. This study illustrates the importance of characterizing all parts of a protein and suggests a key role for the N‐terminal A'α extension of the LOV domain in controlling EL222 photocycle length. John Wiley & Sons, Inc. 2023-04-01 /pmc/articles/PMC10019195/ /pubmed/36764820 http://dx.doi.org/10.1002/pro.4590 Text en © 2023 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Full‐length Papers Chaudhari, Aditya S. Chatterjee, Aditi Domingos, Catarina A. O. Andrikopoulos, Prokopis C. Liu, Yingliang Andersson, Inger Schneider, Bohdan Lórenz‐Fonfría, Víctor A. Fuertes, Gustavo Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222 |
title | Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
|
title_full | Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
|
title_fullStr | Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
|
title_full_unstemmed | Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
|
title_short | Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in EL222
|
title_sort | genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side‐chains in el222 |
topic | Full‐length Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019195/ https://www.ncbi.nlm.nih.gov/pubmed/36764820 http://dx.doi.org/10.1002/pro.4590 |
work_keys_str_mv | AT chaudhariadityas geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222 AT chatterjeeaditi geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222 AT domingoscatarinaao geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222 AT andrikopoulosprokopisc geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222 AT liuyingliang geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222 AT anderssoninger geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222 AT schneiderbohdan geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222 AT lorenzfonfriavictora geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222 AT fuertesgustavo geneticallyencodednoncanonicalaminoacidsrevealasynchronousdarkreversionofchromophorebackboneandsidechainsinel222 |