Cargando…

Targeting RNA with small molecules: lessons learned from Xist RNA

Although more than 98% of the human genome is noncoding, nearly all drugs on the market target one of about 700 disease-related proteins. However, an increasing number of diseases are now being attributed to noncoding RNA and the ability to target them would vastly expand the chemical space for drug...

Descripción completa

Detalles Bibliográficos
Autores principales: Nickbarg, Elliott B., Spencer, Kerrie B., Mortison, Jonathan D., Lee, Jeannie T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019374/
https://www.ncbi.nlm.nih.gov/pubmed/36725318
http://dx.doi.org/10.1261/rna.079523.122
Descripción
Sumario:Although more than 98% of the human genome is noncoding, nearly all drugs on the market target one of about 700 disease-related proteins. However, an increasing number of diseases are now being attributed to noncoding RNA and the ability to target them would vastly expand the chemical space for drug development. We recently devised a screening strategy based upon affinity-selection mass spectrometry and succeeded in identifying bioactive compounds for the noncoding RNA prototype, Xist. One such compound, termed X1, has drug-like properties and binds specifically to the RepA motif of Xist in vitro and in vivo. Small-angle X-ray scattering analysis reveals that X1 changes the conformation of RepA in solution, thereby explaining the displacement of cognate interacting protein factors (PRC2 and SPEN) and inhibition of X-chromosome inactivation. In this Perspective, we discuss lessons learned from these proof-of-concept experiments and suggest that RNA can be systematically targeted by drug-like compounds to disrupt RNA structure and function.