Cargando…

How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images

BACKGROUND: A CE- and FDA-approved cloud-based Deep learning (DL)-tool for automatic organs at risk (OARs) and clinical target volumes segmentation on computer tomography images is available. Before its implementation in the clinical practice, an independent external validation was conducted. METHOD...

Descripción completa

Detalles Bibliográficos
Autores principales: Strolin, Silvia, Santoro, Miriam, Paolani, Giulia, Ammendolia, Ilario, Arcelli, Alessandra, Benini, Anna, Bisello, Silvia, Cardano, Raffaele, Cavallini, Letizia, Deraco, Elisa, Donati, Costanza Maria, Galietta, Erika, Galuppi, Andrea, Guido, Alessandra, Ferioli, Martina, Laghi, Viola, Medici, Federica, Ntreta, Maria, Razganiayeva, Natalya, Siepe, Giambattista, Tolento, Giorgio, Vallerossa, Daria, Zamagni, Alice, Morganti, Alessio Giuseppe, Strigari, Lidia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019504/
https://www.ncbi.nlm.nih.gov/pubmed/36937399
http://dx.doi.org/10.3389/fonc.2023.1089807
_version_ 1784908039964327936
author Strolin, Silvia
Santoro, Miriam
Paolani, Giulia
Ammendolia, Ilario
Arcelli, Alessandra
Benini, Anna
Bisello, Silvia
Cardano, Raffaele
Cavallini, Letizia
Deraco, Elisa
Donati, Costanza Maria
Galietta, Erika
Galuppi, Andrea
Guido, Alessandra
Ferioli, Martina
Laghi, Viola
Medici, Federica
Ntreta, Maria
Razganiayeva, Natalya
Siepe, Giambattista
Tolento, Giorgio
Vallerossa, Daria
Zamagni, Alice
Morganti, Alessio Giuseppe
Strigari, Lidia
author_facet Strolin, Silvia
Santoro, Miriam
Paolani, Giulia
Ammendolia, Ilario
Arcelli, Alessandra
Benini, Anna
Bisello, Silvia
Cardano, Raffaele
Cavallini, Letizia
Deraco, Elisa
Donati, Costanza Maria
Galietta, Erika
Galuppi, Andrea
Guido, Alessandra
Ferioli, Martina
Laghi, Viola
Medici, Federica
Ntreta, Maria
Razganiayeva, Natalya
Siepe, Giambattista
Tolento, Giorgio
Vallerossa, Daria
Zamagni, Alice
Morganti, Alessio Giuseppe
Strigari, Lidia
author_sort Strolin, Silvia
collection PubMed
description BACKGROUND: A CE- and FDA-approved cloud-based Deep learning (DL)-tool for automatic organs at risk (OARs) and clinical target volumes segmentation on computer tomography images is available. Before its implementation in the clinical practice, an independent external validation was conducted. METHODS: At least a senior and two in training Radiation Oncologists (ROs) manually contoured the volumes of interest (VOIs) for 6 tumoral sites. The auto-segmented contours were retrieved from the DL-tool and, if needed, manually corrected by ROs. The level of ROs satisfaction and the duration of contouring were registered. Relative volume differences, similarity indices, satisfactory grades, and time saved were analyzed using a semi-automatic tool. RESULTS: Seven thousand seven hundred sixty-five VOIs were delineated on the CT images of 111 representative patients. The median (range) time for manual VOIs delineation, DL-based segmentation, and subsequent manual corrections were 25.0 (8.0-115.0), 2.3 (1.2-8) and 10.0 minutes (0.3-46.3), respectively. The overall time for VOIs retrieving and modification was statistically significantly lower than for manual contouring (p<0.001). The DL-tool was generally appreciated by ROs, with 44% of vote 4 (well done) and 43% of vote 5 (very well done), correlated with the saved time (p<0.001). The relative volume differences and similarity indexes suggested a better inter-agreement of manually adjusted DL-based VOIs than manually segmented ones. CONCLUSIONS: The application of the DL-tool resulted satisfactory, especially in complex delineation cases, improving the ROs inter-agreement of delineated VOIs and saving time.
format Online
Article
Text
id pubmed-10019504
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-100195042023-03-17 How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images Strolin, Silvia Santoro, Miriam Paolani, Giulia Ammendolia, Ilario Arcelli, Alessandra Benini, Anna Bisello, Silvia Cardano, Raffaele Cavallini, Letizia Deraco, Elisa Donati, Costanza Maria Galietta, Erika Galuppi, Andrea Guido, Alessandra Ferioli, Martina Laghi, Viola Medici, Federica Ntreta, Maria Razganiayeva, Natalya Siepe, Giambattista Tolento, Giorgio Vallerossa, Daria Zamagni, Alice Morganti, Alessio Giuseppe Strigari, Lidia Front Oncol Oncology BACKGROUND: A CE- and FDA-approved cloud-based Deep learning (DL)-tool for automatic organs at risk (OARs) and clinical target volumes segmentation on computer tomography images is available. Before its implementation in the clinical practice, an independent external validation was conducted. METHODS: At least a senior and two in training Radiation Oncologists (ROs) manually contoured the volumes of interest (VOIs) for 6 tumoral sites. The auto-segmented contours were retrieved from the DL-tool and, if needed, manually corrected by ROs. The level of ROs satisfaction and the duration of contouring were registered. Relative volume differences, similarity indices, satisfactory grades, and time saved were analyzed using a semi-automatic tool. RESULTS: Seven thousand seven hundred sixty-five VOIs were delineated on the CT images of 111 representative patients. The median (range) time for manual VOIs delineation, DL-based segmentation, and subsequent manual corrections were 25.0 (8.0-115.0), 2.3 (1.2-8) and 10.0 minutes (0.3-46.3), respectively. The overall time for VOIs retrieving and modification was statistically significantly lower than for manual contouring (p<0.001). The DL-tool was generally appreciated by ROs, with 44% of vote 4 (well done) and 43% of vote 5 (very well done), correlated with the saved time (p<0.001). The relative volume differences and similarity indexes suggested a better inter-agreement of manually adjusted DL-based VOIs than manually segmented ones. CONCLUSIONS: The application of the DL-tool resulted satisfactory, especially in complex delineation cases, improving the ROs inter-agreement of delineated VOIs and saving time. Frontiers Media S.A. 2023-03-02 /pmc/articles/PMC10019504/ /pubmed/36937399 http://dx.doi.org/10.3389/fonc.2023.1089807 Text en Copyright © 2023 Strolin, Santoro, Paolani, Ammendolia, Arcelli, Benini, Bisello, Cardano, Cavallini, Deraco, Donati, Galietta, Galuppi, Guido, Ferioli, Laghi, Medici, Ntreta, Razganiayeva, Siepe, Tolento, Vallerossa, Zamagni, Morganti and Strigari https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Strolin, Silvia
Santoro, Miriam
Paolani, Giulia
Ammendolia, Ilario
Arcelli, Alessandra
Benini, Anna
Bisello, Silvia
Cardano, Raffaele
Cavallini, Letizia
Deraco, Elisa
Donati, Costanza Maria
Galietta, Erika
Galuppi, Andrea
Guido, Alessandra
Ferioli, Martina
Laghi, Viola
Medici, Federica
Ntreta, Maria
Razganiayeva, Natalya
Siepe, Giambattista
Tolento, Giorgio
Vallerossa, Daria
Zamagni, Alice
Morganti, Alessio Giuseppe
Strigari, Lidia
How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images
title How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images
title_full How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images
title_fullStr How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images
title_full_unstemmed How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images
title_short How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images
title_sort how smart is artificial intelligence in organs delineation? testing a ce and fda-approved deep-learning tool using multiple expert contours delineated on planning ct images
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019504/
https://www.ncbi.nlm.nih.gov/pubmed/36937399
http://dx.doi.org/10.3389/fonc.2023.1089807
work_keys_str_mv AT strolinsilvia howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT santoromiriam howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT paolanigiulia howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT ammendoliailario howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT arcellialessandra howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT beninianna howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT bisellosilvia howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT cardanoraffaele howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT cavalliniletizia howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT deracoelisa howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT donaticostanzamaria howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT galiettaerika howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT galuppiandrea howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT guidoalessandra howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT feriolimartina howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT laghiviola howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT medicifederica howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT ntretamaria howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT razganiayevanatalya howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT siepegiambattista howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT tolentogiorgio howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT vallerossadaria howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT zamagnialice howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT morgantialessiogiuseppe howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages
AT strigarilidia howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages