Cargando…
How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images
BACKGROUND: A CE- and FDA-approved cloud-based Deep learning (DL)-tool for automatic organs at risk (OARs) and clinical target volumes segmentation on computer tomography images is available. Before its implementation in the clinical practice, an independent external validation was conducted. METHOD...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019504/ https://www.ncbi.nlm.nih.gov/pubmed/36937399 http://dx.doi.org/10.3389/fonc.2023.1089807 |
_version_ | 1784908039964327936 |
---|---|
author | Strolin, Silvia Santoro, Miriam Paolani, Giulia Ammendolia, Ilario Arcelli, Alessandra Benini, Anna Bisello, Silvia Cardano, Raffaele Cavallini, Letizia Deraco, Elisa Donati, Costanza Maria Galietta, Erika Galuppi, Andrea Guido, Alessandra Ferioli, Martina Laghi, Viola Medici, Federica Ntreta, Maria Razganiayeva, Natalya Siepe, Giambattista Tolento, Giorgio Vallerossa, Daria Zamagni, Alice Morganti, Alessio Giuseppe Strigari, Lidia |
author_facet | Strolin, Silvia Santoro, Miriam Paolani, Giulia Ammendolia, Ilario Arcelli, Alessandra Benini, Anna Bisello, Silvia Cardano, Raffaele Cavallini, Letizia Deraco, Elisa Donati, Costanza Maria Galietta, Erika Galuppi, Andrea Guido, Alessandra Ferioli, Martina Laghi, Viola Medici, Federica Ntreta, Maria Razganiayeva, Natalya Siepe, Giambattista Tolento, Giorgio Vallerossa, Daria Zamagni, Alice Morganti, Alessio Giuseppe Strigari, Lidia |
author_sort | Strolin, Silvia |
collection | PubMed |
description | BACKGROUND: A CE- and FDA-approved cloud-based Deep learning (DL)-tool for automatic organs at risk (OARs) and clinical target volumes segmentation on computer tomography images is available. Before its implementation in the clinical practice, an independent external validation was conducted. METHODS: At least a senior and two in training Radiation Oncologists (ROs) manually contoured the volumes of interest (VOIs) for 6 tumoral sites. The auto-segmented contours were retrieved from the DL-tool and, if needed, manually corrected by ROs. The level of ROs satisfaction and the duration of contouring were registered. Relative volume differences, similarity indices, satisfactory grades, and time saved were analyzed using a semi-automatic tool. RESULTS: Seven thousand seven hundred sixty-five VOIs were delineated on the CT images of 111 representative patients. The median (range) time for manual VOIs delineation, DL-based segmentation, and subsequent manual corrections were 25.0 (8.0-115.0), 2.3 (1.2-8) and 10.0 minutes (0.3-46.3), respectively. The overall time for VOIs retrieving and modification was statistically significantly lower than for manual contouring (p<0.001). The DL-tool was generally appreciated by ROs, with 44% of vote 4 (well done) and 43% of vote 5 (very well done), correlated with the saved time (p<0.001). The relative volume differences and similarity indexes suggested a better inter-agreement of manually adjusted DL-based VOIs than manually segmented ones. CONCLUSIONS: The application of the DL-tool resulted satisfactory, especially in complex delineation cases, improving the ROs inter-agreement of delineated VOIs and saving time. |
format | Online Article Text |
id | pubmed-10019504 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100195042023-03-17 How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images Strolin, Silvia Santoro, Miriam Paolani, Giulia Ammendolia, Ilario Arcelli, Alessandra Benini, Anna Bisello, Silvia Cardano, Raffaele Cavallini, Letizia Deraco, Elisa Donati, Costanza Maria Galietta, Erika Galuppi, Andrea Guido, Alessandra Ferioli, Martina Laghi, Viola Medici, Federica Ntreta, Maria Razganiayeva, Natalya Siepe, Giambattista Tolento, Giorgio Vallerossa, Daria Zamagni, Alice Morganti, Alessio Giuseppe Strigari, Lidia Front Oncol Oncology BACKGROUND: A CE- and FDA-approved cloud-based Deep learning (DL)-tool for automatic organs at risk (OARs) and clinical target volumes segmentation on computer tomography images is available. Before its implementation in the clinical practice, an independent external validation was conducted. METHODS: At least a senior and two in training Radiation Oncologists (ROs) manually contoured the volumes of interest (VOIs) for 6 tumoral sites. The auto-segmented contours were retrieved from the DL-tool and, if needed, manually corrected by ROs. The level of ROs satisfaction and the duration of contouring were registered. Relative volume differences, similarity indices, satisfactory grades, and time saved were analyzed using a semi-automatic tool. RESULTS: Seven thousand seven hundred sixty-five VOIs were delineated on the CT images of 111 representative patients. The median (range) time for manual VOIs delineation, DL-based segmentation, and subsequent manual corrections were 25.0 (8.0-115.0), 2.3 (1.2-8) and 10.0 minutes (0.3-46.3), respectively. The overall time for VOIs retrieving and modification was statistically significantly lower than for manual contouring (p<0.001). The DL-tool was generally appreciated by ROs, with 44% of vote 4 (well done) and 43% of vote 5 (very well done), correlated with the saved time (p<0.001). The relative volume differences and similarity indexes suggested a better inter-agreement of manually adjusted DL-based VOIs than manually segmented ones. CONCLUSIONS: The application of the DL-tool resulted satisfactory, especially in complex delineation cases, improving the ROs inter-agreement of delineated VOIs and saving time. Frontiers Media S.A. 2023-03-02 /pmc/articles/PMC10019504/ /pubmed/36937399 http://dx.doi.org/10.3389/fonc.2023.1089807 Text en Copyright © 2023 Strolin, Santoro, Paolani, Ammendolia, Arcelli, Benini, Bisello, Cardano, Cavallini, Deraco, Donati, Galietta, Galuppi, Guido, Ferioli, Laghi, Medici, Ntreta, Razganiayeva, Siepe, Tolento, Vallerossa, Zamagni, Morganti and Strigari https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Strolin, Silvia Santoro, Miriam Paolani, Giulia Ammendolia, Ilario Arcelli, Alessandra Benini, Anna Bisello, Silvia Cardano, Raffaele Cavallini, Letizia Deraco, Elisa Donati, Costanza Maria Galietta, Erika Galuppi, Andrea Guido, Alessandra Ferioli, Martina Laghi, Viola Medici, Federica Ntreta, Maria Razganiayeva, Natalya Siepe, Giambattista Tolento, Giorgio Vallerossa, Daria Zamagni, Alice Morganti, Alessio Giuseppe Strigari, Lidia How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images |
title | How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images |
title_full | How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images |
title_fullStr | How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images |
title_full_unstemmed | How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images |
title_short | How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images |
title_sort | how smart is artificial intelligence in organs delineation? testing a ce and fda-approved deep-learning tool using multiple expert contours delineated on planning ct images |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019504/ https://www.ncbi.nlm.nih.gov/pubmed/36937399 http://dx.doi.org/10.3389/fonc.2023.1089807 |
work_keys_str_mv | AT strolinsilvia howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT santoromiriam howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT paolanigiulia howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT ammendoliailario howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT arcellialessandra howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT beninianna howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT bisellosilvia howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT cardanoraffaele howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT cavalliniletizia howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT deracoelisa howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT donaticostanzamaria howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT galiettaerika howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT galuppiandrea howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT guidoalessandra howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT feriolimartina howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT laghiviola howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT medicifederica howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT ntretamaria howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT razganiayevanatalya howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT siepegiambattista howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT tolentogiorgio howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT vallerossadaria howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT zamagnialice howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT morgantialessiogiuseppe howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages AT strigarilidia howsmartisartificialintelligenceinorgansdelineationtestingaceandfdaapproveddeeplearningtoolusingmultipleexpertcontoursdelineatedonplanningctimages |