Cargando…

A practitioner's guide to geospatial analysis in a neuroimaging context

INTRODUCTION: Health disparities arise from biological‐environmental interactions. Neuroimaging cohorts are reaching sufficiently large sample sizes such that analyses could evaluate how the environment affects the brain. We present a practical guide for applying geospatial methods to a neuroimaging...

Descripción completa

Detalles Bibliográficos
Autores principales: Wisch, Julie K., Babulal, Ganesh M, Petersen, Kalen, Millar, Peter R., Shacham, Enbal, Scroggins, Stephen, Boerwinkle, Anna H., Flores, Shaney, Keefe, Sarah, Gordon, Brian A., Morris, John C., Ances, Beau M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019584/
https://www.ncbi.nlm.nih.gov/pubmed/36935765
http://dx.doi.org/10.1002/dad2.12413
_version_ 1784908054335062016
author Wisch, Julie K.
Babulal, Ganesh M
Petersen, Kalen
Millar, Peter R.
Shacham, Enbal
Scroggins, Stephen
Boerwinkle, Anna H.
Flores, Shaney
Keefe, Sarah
Gordon, Brian A.
Morris, John C.
Ances, Beau M.
author_facet Wisch, Julie K.
Babulal, Ganesh M
Petersen, Kalen
Millar, Peter R.
Shacham, Enbal
Scroggins, Stephen
Boerwinkle, Anna H.
Flores, Shaney
Keefe, Sarah
Gordon, Brian A.
Morris, John C.
Ances, Beau M.
author_sort Wisch, Julie K.
collection PubMed
description INTRODUCTION: Health disparities arise from biological‐environmental interactions. Neuroimaging cohorts are reaching sufficiently large sample sizes such that analyses could evaluate how the environment affects the brain. We present a practical guide for applying geospatial methods to a neuroimaging cohort. METHODS: We estimated brain age gap (BAG) from structural magnetic resonance imaging (MRI) from 239 city‐dwelling participants in St. Louis, Missouri. We compared these participants to population‐level estimates from the American Community Survey (ACS). We used geospatial analysis to identify neighborhoods associated with patterns of altered brain structure. We also evaluated the relationship between Area Deprivation Index (ADI) and BAG. RESULTS: We identify areas in St. Louis, Missouri that were significantly associated with higher BAG from a spatially representative cohort. We provide replication code. CONCLUSION: We observe a relationship between neighborhoods and brain health, which suggests that neighborhood‐based interventions could be appropriate. We encourage other studies to geocode participant information to evaluate biological‐environmental interaction.
format Online
Article
Text
id pubmed-10019584
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-100195842023-03-17 A practitioner's guide to geospatial analysis in a neuroimaging context Wisch, Julie K. Babulal, Ganesh M Petersen, Kalen Millar, Peter R. Shacham, Enbal Scroggins, Stephen Boerwinkle, Anna H. Flores, Shaney Keefe, Sarah Gordon, Brian A. Morris, John C. Ances, Beau M. Alzheimers Dement (Amst) Research Articles INTRODUCTION: Health disparities arise from biological‐environmental interactions. Neuroimaging cohorts are reaching sufficiently large sample sizes such that analyses could evaluate how the environment affects the brain. We present a practical guide for applying geospatial methods to a neuroimaging cohort. METHODS: We estimated brain age gap (BAG) from structural magnetic resonance imaging (MRI) from 239 city‐dwelling participants in St. Louis, Missouri. We compared these participants to population‐level estimates from the American Community Survey (ACS). We used geospatial analysis to identify neighborhoods associated with patterns of altered brain structure. We also evaluated the relationship between Area Deprivation Index (ADI) and BAG. RESULTS: We identify areas in St. Louis, Missouri that were significantly associated with higher BAG from a spatially representative cohort. We provide replication code. CONCLUSION: We observe a relationship between neighborhoods and brain health, which suggests that neighborhood‐based interventions could be appropriate. We encourage other studies to geocode participant information to evaluate biological‐environmental interaction. John Wiley and Sons Inc. 2023-03-16 /pmc/articles/PMC10019584/ /pubmed/36935765 http://dx.doi.org/10.1002/dad2.12413 Text en © 2023 The Authors. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer's Association. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Wisch, Julie K.
Babulal, Ganesh M
Petersen, Kalen
Millar, Peter R.
Shacham, Enbal
Scroggins, Stephen
Boerwinkle, Anna H.
Flores, Shaney
Keefe, Sarah
Gordon, Brian A.
Morris, John C.
Ances, Beau M.
A practitioner's guide to geospatial analysis in a neuroimaging context
title A practitioner's guide to geospatial analysis in a neuroimaging context
title_full A practitioner's guide to geospatial analysis in a neuroimaging context
title_fullStr A practitioner's guide to geospatial analysis in a neuroimaging context
title_full_unstemmed A practitioner's guide to geospatial analysis in a neuroimaging context
title_short A practitioner's guide to geospatial analysis in a neuroimaging context
title_sort practitioner's guide to geospatial analysis in a neuroimaging context
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019584/
https://www.ncbi.nlm.nih.gov/pubmed/36935765
http://dx.doi.org/10.1002/dad2.12413
work_keys_str_mv AT wischjuliek apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT babulalganeshm apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT petersenkalen apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT millarpeterr apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT shachamenbal apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT scrogginsstephen apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT boerwinkleannah apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT floresshaney apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT keefesarah apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT gordonbriana apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT morrisjohnc apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT ancesbeaum apractitionersguidetogeospatialanalysisinaneuroimagingcontext
AT wischjuliek practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT babulalganeshm practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT petersenkalen practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT millarpeterr practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT shachamenbal practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT scrogginsstephen practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT boerwinkleannah practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT floresshaney practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT keefesarah practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT gordonbriana practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT morrisjohnc practitionersguidetogeospatialanalysisinaneuroimagingcontext
AT ancesbeaum practitionersguidetogeospatialanalysisinaneuroimagingcontext