Cargando…
A practitioner's guide to geospatial analysis in a neuroimaging context
INTRODUCTION: Health disparities arise from biological‐environmental interactions. Neuroimaging cohorts are reaching sufficiently large sample sizes such that analyses could evaluate how the environment affects the brain. We present a practical guide for applying geospatial methods to a neuroimaging...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019584/ https://www.ncbi.nlm.nih.gov/pubmed/36935765 http://dx.doi.org/10.1002/dad2.12413 |
_version_ | 1784908054335062016 |
---|---|
author | Wisch, Julie K. Babulal, Ganesh M Petersen, Kalen Millar, Peter R. Shacham, Enbal Scroggins, Stephen Boerwinkle, Anna H. Flores, Shaney Keefe, Sarah Gordon, Brian A. Morris, John C. Ances, Beau M. |
author_facet | Wisch, Julie K. Babulal, Ganesh M Petersen, Kalen Millar, Peter R. Shacham, Enbal Scroggins, Stephen Boerwinkle, Anna H. Flores, Shaney Keefe, Sarah Gordon, Brian A. Morris, John C. Ances, Beau M. |
author_sort | Wisch, Julie K. |
collection | PubMed |
description | INTRODUCTION: Health disparities arise from biological‐environmental interactions. Neuroimaging cohorts are reaching sufficiently large sample sizes such that analyses could evaluate how the environment affects the brain. We present a practical guide for applying geospatial methods to a neuroimaging cohort. METHODS: We estimated brain age gap (BAG) from structural magnetic resonance imaging (MRI) from 239 city‐dwelling participants in St. Louis, Missouri. We compared these participants to population‐level estimates from the American Community Survey (ACS). We used geospatial analysis to identify neighborhoods associated with patterns of altered brain structure. We also evaluated the relationship between Area Deprivation Index (ADI) and BAG. RESULTS: We identify areas in St. Louis, Missouri that were significantly associated with higher BAG from a spatially representative cohort. We provide replication code. CONCLUSION: We observe a relationship between neighborhoods and brain health, which suggests that neighborhood‐based interventions could be appropriate. We encourage other studies to geocode participant information to evaluate biological‐environmental interaction. |
format | Online Article Text |
id | pubmed-10019584 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100195842023-03-17 A practitioner's guide to geospatial analysis in a neuroimaging context Wisch, Julie K. Babulal, Ganesh M Petersen, Kalen Millar, Peter R. Shacham, Enbal Scroggins, Stephen Boerwinkle, Anna H. Flores, Shaney Keefe, Sarah Gordon, Brian A. Morris, John C. Ances, Beau M. Alzheimers Dement (Amst) Research Articles INTRODUCTION: Health disparities arise from biological‐environmental interactions. Neuroimaging cohorts are reaching sufficiently large sample sizes such that analyses could evaluate how the environment affects the brain. We present a practical guide for applying geospatial methods to a neuroimaging cohort. METHODS: We estimated brain age gap (BAG) from structural magnetic resonance imaging (MRI) from 239 city‐dwelling participants in St. Louis, Missouri. We compared these participants to population‐level estimates from the American Community Survey (ACS). We used geospatial analysis to identify neighborhoods associated with patterns of altered brain structure. We also evaluated the relationship between Area Deprivation Index (ADI) and BAG. RESULTS: We identify areas in St. Louis, Missouri that were significantly associated with higher BAG from a spatially representative cohort. We provide replication code. CONCLUSION: We observe a relationship between neighborhoods and brain health, which suggests that neighborhood‐based interventions could be appropriate. We encourage other studies to geocode participant information to evaluate biological‐environmental interaction. John Wiley and Sons Inc. 2023-03-16 /pmc/articles/PMC10019584/ /pubmed/36935765 http://dx.doi.org/10.1002/dad2.12413 Text en © 2023 The Authors. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer's Association. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Wisch, Julie K. Babulal, Ganesh M Petersen, Kalen Millar, Peter R. Shacham, Enbal Scroggins, Stephen Boerwinkle, Anna H. Flores, Shaney Keefe, Sarah Gordon, Brian A. Morris, John C. Ances, Beau M. A practitioner's guide to geospatial analysis in a neuroimaging context |
title | A practitioner's guide to geospatial analysis in a neuroimaging context |
title_full | A practitioner's guide to geospatial analysis in a neuroimaging context |
title_fullStr | A practitioner's guide to geospatial analysis in a neuroimaging context |
title_full_unstemmed | A practitioner's guide to geospatial analysis in a neuroimaging context |
title_short | A practitioner's guide to geospatial analysis in a neuroimaging context |
title_sort | practitioner's guide to geospatial analysis in a neuroimaging context |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019584/ https://www.ncbi.nlm.nih.gov/pubmed/36935765 http://dx.doi.org/10.1002/dad2.12413 |
work_keys_str_mv | AT wischjuliek apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT babulalganeshm apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT petersenkalen apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT millarpeterr apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT shachamenbal apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT scrogginsstephen apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT boerwinkleannah apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT floresshaney apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT keefesarah apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT gordonbriana apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT morrisjohnc apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT ancesbeaum apractitionersguidetogeospatialanalysisinaneuroimagingcontext AT wischjuliek practitionersguidetogeospatialanalysisinaneuroimagingcontext AT babulalganeshm practitionersguidetogeospatialanalysisinaneuroimagingcontext AT petersenkalen practitionersguidetogeospatialanalysisinaneuroimagingcontext AT millarpeterr practitionersguidetogeospatialanalysisinaneuroimagingcontext AT shachamenbal practitionersguidetogeospatialanalysisinaneuroimagingcontext AT scrogginsstephen practitionersguidetogeospatialanalysisinaneuroimagingcontext AT boerwinkleannah practitionersguidetogeospatialanalysisinaneuroimagingcontext AT floresshaney practitionersguidetogeospatialanalysisinaneuroimagingcontext AT keefesarah practitionersguidetogeospatialanalysisinaneuroimagingcontext AT gordonbriana practitionersguidetogeospatialanalysisinaneuroimagingcontext AT morrisjohnc practitionersguidetogeospatialanalysisinaneuroimagingcontext AT ancesbeaum practitionersguidetogeospatialanalysisinaneuroimagingcontext |