Cargando…

Iodide uptake by forest soils is principally related to the activity of extracellular oxidases

(129)I is a nuclear fission decay product of concern because of its long half-life (16 Ma) and propensity to bioaccumulate. Microorganisms impact iodine mobility in soil systems by promoting iodination (covalent binding) of soil organic matter through processes that are not fully understood. Here, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Grandbois, Russell M., Santschi, Peter H., Xu, Chen, Mitchell, Joshua M., Kaplan, Daniel I., Yeager, Chris M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019592/
https://www.ncbi.nlm.nih.gov/pubmed/36936531
http://dx.doi.org/10.3389/fchem.2023.1105641
Descripción
Sumario:(129)I is a nuclear fission decay product of concern because of its long half-life (16 Ma) and propensity to bioaccumulate. Microorganisms impact iodine mobility in soil systems by promoting iodination (covalent binding) of soil organic matter through processes that are not fully understood. Here, we examined iodide uptake by soils collected at two depths (0–10 and 10–20 cm) from 5 deciduous and coniferous forests in Japan and the United States. Autoclaved soils, and soils amended with an enzyme inhibitor (sodium azide) or an antibacterial agent (bronopol), bound significantly less (125)I tracer (93%, 81%, 61% decrease, respectively) than the untreated control soils, confirming a microbial role in soil iodide uptake. Correlation analyses identified the strongest significant correlation between (125)I uptake and three explanatory variables, actinobacteria soil biomass (p = 6.04E-04, 1.35E-02 for Kendall-Tau and regression analysis, respectively), soil nitrogen content (p = 4.86E-04, 4.24E-03), and soil oxidase enzyme activity at pH 7.0 using the substrate L-DOPA (p = 2.83E-03, 4.33E-04) and at pH 5.5 using the ABTS (p = 5.09E-03, 3.14E-03). Together, the results suggest that extracellular oxidases, primarily of bacterial origin, are the primary catalyst for soil iodination in aerobic, surface soils of deciduous and coniferous forests, and that soil N content may be indicative of the availability of binding sites for reactive iodine species.