Cargando…

Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study: Comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada - ELSA-Brasil: estudo de acurácia

CONTEXT AND OBJECTIVE: Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study...

Descripción completa

Detalles Bibliográficos
Autores principales: Olivera, André Rodrigues, Roesler, Valter, Iochpe, Cirano, Schmidt, Maria Inês, Vigo, Álvaro, Barreto, Sandhi Maria, Duncan, Bruce Bartholow
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Associação Paulista de Medicina - APM 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019841/
https://www.ncbi.nlm.nih.gov/pubmed/28746659
http://dx.doi.org/10.1590/1516-3180.2016.0309010217
_version_ 1784908115951484928
author Olivera, André Rodrigues
Roesler, Valter
Iochpe, Cirano
Schmidt, Maria Inês
Vigo, Álvaro
Barreto, Sandhi Maria
Duncan, Bruce Bartholow
author_facet Olivera, André Rodrigues
Roesler, Valter
Iochpe, Cirano
Schmidt, Maria Inês
Vigo, Álvaro
Barreto, Sandhi Maria
Duncan, Bruce Bartholow
author_sort Olivera, André Rodrigues
collection PubMed
description CONTEXT AND OBJECTIVE: Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task. DESIGN AND SETTING: Comparison of machine-learning algorithms to develop predictive models using data from ELSA-Brasil. METHODS: After selecting a subset of 27 candidate variables from the literature, models were built and validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; (ii) automatic variable selection using forward selection, a wrapper strategy with four different machine-learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; (iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) generalization testing on an independent dataset. The models were created with the following machine-learning algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. RESULTS: The best models were created using artificial neural networks and logistic regression. ­These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation step and 74.17% and 74.41% in the generalization testing step. CONCLUSION: Most of the predictive models produced similar results, and demonstrated the feasibility of identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained clinical data.
format Online
Article
Text
id pubmed-10019841
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Associação Paulista de Medicina - APM
record_format MEDLINE/PubMed
spelling pubmed-100198412023-03-17 Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study: Comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada - ELSA-Brasil: estudo de acurácia Olivera, André Rodrigues Roesler, Valter Iochpe, Cirano Schmidt, Maria Inês Vigo, Álvaro Barreto, Sandhi Maria Duncan, Bruce Bartholow Sao Paulo Med J Original Article CONTEXT AND OBJECTIVE: Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task. DESIGN AND SETTING: Comparison of machine-learning algorithms to develop predictive models using data from ELSA-Brasil. METHODS: After selecting a subset of 27 candidate variables from the literature, models were built and validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; (ii) automatic variable selection using forward selection, a wrapper strategy with four different machine-learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; (iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) generalization testing on an independent dataset. The models were created with the following machine-learning algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. RESULTS: The best models were created using artificial neural networks and logistic regression. ­These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation step and 74.17% and 74.41% in the generalization testing step. CONCLUSION: Most of the predictive models produced similar results, and demonstrated the feasibility of identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained clinical data. Associação Paulista de Medicina - APM 2017-04-03 /pmc/articles/PMC10019841/ /pubmed/28746659 http://dx.doi.org/10.1590/1516-3180.2016.0309010217 Text en © 2022 by Associação Paulista de Medicina https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons license.
spellingShingle Original Article
Olivera, André Rodrigues
Roesler, Valter
Iochpe, Cirano
Schmidt, Maria Inês
Vigo, Álvaro
Barreto, Sandhi Maria
Duncan, Bruce Bartholow
Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study: Comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada - ELSA-Brasil: estudo de acurácia
title Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study: Comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada - ELSA-Brasil: estudo de acurácia
title_full Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study: Comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada - ELSA-Brasil: estudo de acurácia
title_fullStr Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study: Comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada - ELSA-Brasil: estudo de acurácia
title_full_unstemmed Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study: Comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada - ELSA-Brasil: estudo de acurácia
title_short Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study: Comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada - ELSA-Brasil: estudo de acurácia
title_sort comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - elsa-brasil: accuracy study: comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada - elsa-brasil: estudo de acurácia
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019841/
https://www.ncbi.nlm.nih.gov/pubmed/28746659
http://dx.doi.org/10.1590/1516-3180.2016.0309010217
work_keys_str_mv AT oliveraandrerodrigues comparisonofmachinelearningalgorithmstobuildapredictivemodelfordetectingundiagnoseddiabeteselsabrasilaccuracystudycomparacaodealgoritmosdeaprendizagemdemaquinaparaconstruirummodelopreditivoparadeteccaodediabetesnaodiagnosticadaelsabrasilestudodeacuracia
AT roeslervalter comparisonofmachinelearningalgorithmstobuildapredictivemodelfordetectingundiagnoseddiabeteselsabrasilaccuracystudycomparacaodealgoritmosdeaprendizagemdemaquinaparaconstruirummodelopreditivoparadeteccaodediabetesnaodiagnosticadaelsabrasilestudodeacuracia
AT iochpecirano comparisonofmachinelearningalgorithmstobuildapredictivemodelfordetectingundiagnoseddiabeteselsabrasilaccuracystudycomparacaodealgoritmosdeaprendizagemdemaquinaparaconstruirummodelopreditivoparadeteccaodediabetesnaodiagnosticadaelsabrasilestudodeacuracia
AT schmidtmariaines comparisonofmachinelearningalgorithmstobuildapredictivemodelfordetectingundiagnoseddiabeteselsabrasilaccuracystudycomparacaodealgoritmosdeaprendizagemdemaquinaparaconstruirummodelopreditivoparadeteccaodediabetesnaodiagnosticadaelsabrasilestudodeacuracia
AT vigoalvaro comparisonofmachinelearningalgorithmstobuildapredictivemodelfordetectingundiagnoseddiabeteselsabrasilaccuracystudycomparacaodealgoritmosdeaprendizagemdemaquinaparaconstruirummodelopreditivoparadeteccaodediabetesnaodiagnosticadaelsabrasilestudodeacuracia
AT barretosandhimaria comparisonofmachinelearningalgorithmstobuildapredictivemodelfordetectingundiagnoseddiabeteselsabrasilaccuracystudycomparacaodealgoritmosdeaprendizagemdemaquinaparaconstruirummodelopreditivoparadeteccaodediabetesnaodiagnosticadaelsabrasilestudodeacuracia
AT duncanbrucebartholow comparisonofmachinelearningalgorithmstobuildapredictivemodelfordetectingundiagnoseddiabeteselsabrasilaccuracystudycomparacaodealgoritmosdeaprendizagemdemaquinaparaconstruirummodelopreditivoparadeteccaodediabetesnaodiagnosticadaelsabrasilestudodeacuracia