Cargando…
Preparation and characterization of diacylglycerol via ultrasound-assisted enzyme-catalyzed transesterification of lard with glycerol monolaurate
The study aimed to evaluate the effect of ultrasonic pretreatment on the transesterification of lard with glycerol monolaurate (GML) using Lipozyme TL IM to synthesize diacylglycerol (DAG), and the physicochemical properties of lard, GML, ultrasonic-treated diacylglycerol (named U-DAG), purified ult...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020118/ https://www.ncbi.nlm.nih.gov/pubmed/36898248 http://dx.doi.org/10.1016/j.ultsonch.2023.106354 |
Sumario: | The study aimed to evaluate the effect of ultrasonic pretreatment on the transesterification of lard with glycerol monolaurate (GML) using Lipozyme TL IM to synthesize diacylglycerol (DAG), and the physicochemical properties of lard, GML, ultrasonic-treated diacylglycerol (named U-DAG), purified ultrasonic-treated diacylglycerol obtained by molecular distillation (named P-U-DAG), and without ultrasonic-treated diacylglycerol (named N-U-DAG) were analyzed. The optimized ultrasonic pretreatment conditions were: lard to GML mole ratio 3:1, enzyme dosage 6 %, ultrasonic temperature 80 °C, time 9 min, power 315 W. After ultrasonic pretreatment, the mixtures reacted for 4 h in a water bath at 60 °C, the content of DAG reached 40.59 %. No significant variations were observed between U-DAG and N-U-DAG in fatty acids compositions and iodine value, while P-U-DAG had lower unsaturated fatty acids than U-DAG. Differential scanning calorimetry analysis showed that the melting and crystallization properties of DAGs prepared by ultrasonic pretreatment significantly differed from lard. FTIR spectra noted transesterification reaction from lard and GML with and without ultrasonic pretreatment would not change the structure of lard. However, thermogravimetric analysis proved that N-U-DAG, U-DAG, and P-U-DAG had lower oxidation stability than lard. The higher the content of DAG, the faster the oxidation speed. |
---|