Cargando…
Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data
BACKGROUND: Diarrhoeal disease is a leading cause of childhood illness and death globally, and Shigella is a major aetiological contributor for which a vaccine might soon be available. The primary objective of this study was to model the spatiotemporal variation in paediatric Shigella infection and...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020138/ https://www.ncbi.nlm.nih.gov/pubmed/36796984 http://dx.doi.org/10.1016/S2214-109X(22)00549-6 |
_version_ | 1784908184475926528 |
---|---|
author | Badr, Hamada S Colston, Josh M Nguyen, Nhat-Lan H Chen, Yen Ting Burnett, Eleanor Ali, Syed Asad Rayamajhi, Ajit Satter, Syed M Van Trang, Nguyen Eibach, Daniel Krumkamp, Ralf May, Jürgen Adegnika, Ayola Akim Manouana, Gédéon Prince Kremsner, Peter Gottfried Chilengi, Roma Hatyoka, Luiza Debes, Amanda K Ateudjieu, Jerome Faruque, Abu S G Hossain, M Jahangir Kanungo, Suman Kotloff, Karen L Mandomando, Inácio Nisar, M Imran Omore, Richard Sow, Samba O Zaidi, Anita K M Lambrecht, Nathalie Adu, Bright Page, Nicola Platts-Mills, James A Mavacala Freitas, Cesar Pelkonen, Tuula Ashorn, Per Maleta, Kenneth Ahmed, Tahmeed Bessong, Pascal Bhutta, Zulfiqar A Mason, Carl Mduma, Estomih Olortegui, Maribel P Peñataro Yori, Pablo Lima, Aldo A M Kang, Gagandeep Humphrey, Jean Ntozini, Robert Prendergast, Andrew J Okada, Kazuhisa Wongboot, Warawan Langeland, Nina Moyo, Sabrina J Gaensbauer, James Melgar, Mario Freeman, Matthew Chard, Anna N Thongpaseuth, Vonethalom Houpt, Eric Zaitchik, Benjamin F Kosek, Margaret N |
author_facet | Badr, Hamada S Colston, Josh M Nguyen, Nhat-Lan H Chen, Yen Ting Burnett, Eleanor Ali, Syed Asad Rayamajhi, Ajit Satter, Syed M Van Trang, Nguyen Eibach, Daniel Krumkamp, Ralf May, Jürgen Adegnika, Ayola Akim Manouana, Gédéon Prince Kremsner, Peter Gottfried Chilengi, Roma Hatyoka, Luiza Debes, Amanda K Ateudjieu, Jerome Faruque, Abu S G Hossain, M Jahangir Kanungo, Suman Kotloff, Karen L Mandomando, Inácio Nisar, M Imran Omore, Richard Sow, Samba O Zaidi, Anita K M Lambrecht, Nathalie Adu, Bright Page, Nicola Platts-Mills, James A Mavacala Freitas, Cesar Pelkonen, Tuula Ashorn, Per Maleta, Kenneth Ahmed, Tahmeed Bessong, Pascal Bhutta, Zulfiqar A Mason, Carl Mduma, Estomih Olortegui, Maribel P Peñataro Yori, Pablo Lima, Aldo A M Kang, Gagandeep Humphrey, Jean Ntozini, Robert Prendergast, Andrew J Okada, Kazuhisa Wongboot, Warawan Langeland, Nina Moyo, Sabrina J Gaensbauer, James Melgar, Mario Freeman, Matthew Chard, Anna N Thongpaseuth, Vonethalom Houpt, Eric Zaitchik, Benjamin F Kosek, Margaret N |
author_sort | Badr, Hamada S |
collection | PubMed |
description | BACKGROUND: Diarrhoeal disease is a leading cause of childhood illness and death globally, and Shigella is a major aetiological contributor for which a vaccine might soon be available. The primary objective of this study was to model the spatiotemporal variation in paediatric Shigella infection and map its predicted prevalence across low-income and middle-income countries (LMICs). METHODS: Individual participant data for Shigella positivity in stool samples were sourced from multiple LMIC-based studies of children aged 59 months or younger. Covariates included household-level and participant-level factors ascertained by study investigators and environmental and hydrometeorological variables extracted from various data products at georeferenced child locations. Multivariate models were fitted and prevalence predictions obtained by syndrome and age stratum. FINDINGS: 20 studies from 23 countries (including locations in Central America and South America, sub-Saharan Africa, and south and southeast Asia) contributed 66 563 sample results. Age, symptom status, and study design contributed most to model performance followed by temperature, wind speed, relative humidity, and soil moisture. Probability of Shigella infection exceeded 20% when both precipitation and soil moisture were above average and had a 43% peak in uncomplicated diarrhoea cases at 33°C temperatures, above which it decreased. Compared with unimproved sanitation, improved sanitation decreased the odds of Shigella infection by 19% (odds ratio [OR]=0·81 [95% CI 0·76–0·86]) and open defecation decreased them by 18% (OR=0·82 [0·76–0·88]). INTERPRETATION: The distribution of Shigella is more sensitive to climatological factors, such as temperature, than previously recognised. Conditions in much of sub-Saharan Africa are particularly propitious for Shigella transmission, although hotspots also occur in South America and Central America, the Ganges–Brahmaputra Delta, and the island of New Guinea. These findings can inform prioritisation of populations for future vaccine trials and campaigns. FUNDING: NASA, National Institutes of Health–The National Institute of Allergy and Infectious Diseases, and Bill & Melinda Gates Foundation. |
format | Online Article Text |
id | pubmed-10020138 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-100201382023-03-18 Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data Badr, Hamada S Colston, Josh M Nguyen, Nhat-Lan H Chen, Yen Ting Burnett, Eleanor Ali, Syed Asad Rayamajhi, Ajit Satter, Syed M Van Trang, Nguyen Eibach, Daniel Krumkamp, Ralf May, Jürgen Adegnika, Ayola Akim Manouana, Gédéon Prince Kremsner, Peter Gottfried Chilengi, Roma Hatyoka, Luiza Debes, Amanda K Ateudjieu, Jerome Faruque, Abu S G Hossain, M Jahangir Kanungo, Suman Kotloff, Karen L Mandomando, Inácio Nisar, M Imran Omore, Richard Sow, Samba O Zaidi, Anita K M Lambrecht, Nathalie Adu, Bright Page, Nicola Platts-Mills, James A Mavacala Freitas, Cesar Pelkonen, Tuula Ashorn, Per Maleta, Kenneth Ahmed, Tahmeed Bessong, Pascal Bhutta, Zulfiqar A Mason, Carl Mduma, Estomih Olortegui, Maribel P Peñataro Yori, Pablo Lima, Aldo A M Kang, Gagandeep Humphrey, Jean Ntozini, Robert Prendergast, Andrew J Okada, Kazuhisa Wongboot, Warawan Langeland, Nina Moyo, Sabrina J Gaensbauer, James Melgar, Mario Freeman, Matthew Chard, Anna N Thongpaseuth, Vonethalom Houpt, Eric Zaitchik, Benjamin F Kosek, Margaret N Lancet Glob Health Articles BACKGROUND: Diarrhoeal disease is a leading cause of childhood illness and death globally, and Shigella is a major aetiological contributor for which a vaccine might soon be available. The primary objective of this study was to model the spatiotemporal variation in paediatric Shigella infection and map its predicted prevalence across low-income and middle-income countries (LMICs). METHODS: Individual participant data for Shigella positivity in stool samples were sourced from multiple LMIC-based studies of children aged 59 months or younger. Covariates included household-level and participant-level factors ascertained by study investigators and environmental and hydrometeorological variables extracted from various data products at georeferenced child locations. Multivariate models were fitted and prevalence predictions obtained by syndrome and age stratum. FINDINGS: 20 studies from 23 countries (including locations in Central America and South America, sub-Saharan Africa, and south and southeast Asia) contributed 66 563 sample results. Age, symptom status, and study design contributed most to model performance followed by temperature, wind speed, relative humidity, and soil moisture. Probability of Shigella infection exceeded 20% when both precipitation and soil moisture were above average and had a 43% peak in uncomplicated diarrhoea cases at 33°C temperatures, above which it decreased. Compared with unimproved sanitation, improved sanitation decreased the odds of Shigella infection by 19% (odds ratio [OR]=0·81 [95% CI 0·76–0·86]) and open defecation decreased them by 18% (OR=0·82 [0·76–0·88]). INTERPRETATION: The distribution of Shigella is more sensitive to climatological factors, such as temperature, than previously recognised. Conditions in much of sub-Saharan Africa are particularly propitious for Shigella transmission, although hotspots also occur in South America and Central America, the Ganges–Brahmaputra Delta, and the island of New Guinea. These findings can inform prioritisation of populations for future vaccine trials and campaigns. FUNDING: NASA, National Institutes of Health–The National Institute of Allergy and Infectious Diseases, and Bill & Melinda Gates Foundation. Elsevier Ltd 2023-02-14 /pmc/articles/PMC10020138/ /pubmed/36796984 http://dx.doi.org/10.1016/S2214-109X(22)00549-6 Text en © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Articles Badr, Hamada S Colston, Josh M Nguyen, Nhat-Lan H Chen, Yen Ting Burnett, Eleanor Ali, Syed Asad Rayamajhi, Ajit Satter, Syed M Van Trang, Nguyen Eibach, Daniel Krumkamp, Ralf May, Jürgen Adegnika, Ayola Akim Manouana, Gédéon Prince Kremsner, Peter Gottfried Chilengi, Roma Hatyoka, Luiza Debes, Amanda K Ateudjieu, Jerome Faruque, Abu S G Hossain, M Jahangir Kanungo, Suman Kotloff, Karen L Mandomando, Inácio Nisar, M Imran Omore, Richard Sow, Samba O Zaidi, Anita K M Lambrecht, Nathalie Adu, Bright Page, Nicola Platts-Mills, James A Mavacala Freitas, Cesar Pelkonen, Tuula Ashorn, Per Maleta, Kenneth Ahmed, Tahmeed Bessong, Pascal Bhutta, Zulfiqar A Mason, Carl Mduma, Estomih Olortegui, Maribel P Peñataro Yori, Pablo Lima, Aldo A M Kang, Gagandeep Humphrey, Jean Ntozini, Robert Prendergast, Andrew J Okada, Kazuhisa Wongboot, Warawan Langeland, Nina Moyo, Sabrina J Gaensbauer, James Melgar, Mario Freeman, Matthew Chard, Anna N Thongpaseuth, Vonethalom Houpt, Eric Zaitchik, Benjamin F Kosek, Margaret N Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data |
title | Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data |
title_full | Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data |
title_fullStr | Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data |
title_full_unstemmed | Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data |
title_short | Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data |
title_sort | spatiotemporal variation in risk of shigella infection in childhood: a global risk mapping and prediction model using individual participant data |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020138/ https://www.ncbi.nlm.nih.gov/pubmed/36796984 http://dx.doi.org/10.1016/S2214-109X(22)00549-6 |
work_keys_str_mv | AT badrhamadas spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT colstonjoshm spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT nguyennhatlanh spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT chenyenting spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT burnetteleanor spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT alisyedasad spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT rayamajhiajit spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT sattersyedm spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT vantrangnguyen spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT eibachdaniel spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT krumkampralf spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT mayjurgen spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT adegnikaayolaakim spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT manouanagedeonprince spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT kremsnerpetergottfried spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT chilengiroma spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT hatyokaluiza spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT debesamandak spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT ateudjieujerome spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT faruqueabusg spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT hossainmjahangir spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT kanungosuman spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT kotloffkarenl spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT mandomandoinacio spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT nisarmimran spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT omorerichard spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT sowsambao spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT zaidianitakm spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT lambrechtnathalie spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT adubright spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT pagenicola spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT plattsmillsjamesa spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT mavacalafreitascesar spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT pelkonentuula spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT ashornper spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT maletakenneth spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT ahmedtahmeed spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT bessongpascal spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT bhuttazulfiqara spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT masoncarl spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT mdumaestomih spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT olorteguimaribelp spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT penataroyoripablo spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT limaaldoam spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT kanggagandeep spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT humphreyjean spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT ntozinirobert spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT prendergastandrewj spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT okadakazuhisa spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT wongbootwarawan spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT langelandnina spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT moyosabrinaj spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT gaensbauerjames spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT melgarmario spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT freemanmatthew spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT chardannan spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT thongpaseuthvonethalom spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT houpteric spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT zaitchikbenjaminf spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata AT kosekmargaretn spatiotemporalvariationinriskofshigellainfectioninchildhoodaglobalriskmappingandpredictionmodelusingindividualparticipantdata |