Cargando…
Modelling daily plant growth response to environmental conditions in Chinese solar greenhouse using Bayesian neural network
Understanding how plants respond to environmental conditions such as temperature, CO(2), humidity, and light radiation is essential for plant growth. This paper proposes an Artificial Neural Network (ANN) model to predict plant response to environmental conditions to enhance crop production systems...
Autores principales: | Mohmed, Gadelhag, Heynes, Xanthea, Naser, Abdallah, Sun, Weituo, Hardy, Katherine, Grundy, Steven, Lu, Chungui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020144/ https://www.ncbi.nlm.nih.gov/pubmed/36928066 http://dx.doi.org/10.1038/s41598-023-30846-y |
Ejemplares similares
-
Temperature prediction of solar greenhouse based on NARX regression neural network
por: Gao, Maosheng, et al.
Publicado: (2023) -
Effects of orientation and structure on solar radiation interception in Chinese solar greenhouse
por: Xu, Demin, et al.
Publicado: (2020) -
Prevalence of insulin resistance in Chinese solar greenhouse and field workers: evidence from a solar greenhouse and field workers study
por: Yan, Tenglong, et al.
Publicado: (2023) -
Pollen Release Dynamics and Daily Patterns of Pollen-Collecting Activity of Honeybee Apis mellifera and Bumblebee Bombus lantschouensis in Solar Greenhouse
por: Zhang, Hong, et al.
Publicado: (2019) -
A Transcriptome Analysis Revealing the New Insight of Green Light on Tomato Plant Growth and Drought Stress Tolerance
por: Bian, Zhonghua, et al.
Publicado: (2021)