Cargando…
MRI-based artificial intelligence to predict infection following total hip arthroplasty failure
PURPOSE: To investigate whether artificial intelligence (AI) can differentiate septic from non-septic total hip arthroplasty (THA) failure based on preoperative MRI features. MATERIALS AND METHODS: We included 173 patients (98 females, age: 67 ± 12 years) subjected to first-time THA revision surgery...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Milan
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020270/ https://www.ncbi.nlm.nih.gov/pubmed/36786971 http://dx.doi.org/10.1007/s11547-023-01608-7 |
Sumario: | PURPOSE: To investigate whether artificial intelligence (AI) can differentiate septic from non-septic total hip arthroplasty (THA) failure based on preoperative MRI features. MATERIALS AND METHODS: We included 173 patients (98 females, age: 67 ± 12 years) subjected to first-time THA revision surgery after preoperative pelvis MRI. We divided the patients into a training/validation/internal testing cohort (n = 117) and a temporally independent external-testing cohort (n = 56). MRI features were used to train, validate and test a machine learning algorithm based on support vector machine (SVM) to predict THA infection on the training-internal validation cohort with a nested fivefold validation approach. Machine learning performance was evaluated on independent data from the external-testing cohort. RESULTS: MRI features were significantly more frequently observed in THA infection (P < 0.001), except bone destruction, periarticular soft-tissue mass, and fibrous membrane (P > 0.005). Considering all MRI features in the training/validation/internal-testing cohort, SVM classifier reached 92% sensitivity, 62% specificity, 79% PPV, 83% NPV, 82% accuracy, and 81% AUC in predicting THA infection, with bone edema, extracapsular edema, and synovitis having been the best predictors. After being tested on the external-testing cohort, the classifier showed 92% sensitivity, 79% specificity, 89% PPV, 83% NPV, 88% accuracy, and 89% AUC in predicting THA infection. SVM classifier showed 81% sensitivity, 76% specificity, 66% PPV, 88% NPV, 80% accuracy, and 74% AUC in predicting THA infection in the training/validation/internal-testing cohort based on the only presence of periprosthetic bone marrow edema on MRI, while it showed 68% sensitivity, 89% specificity, 93% PPV, 60% NPV, 75% accuracy, and 79% AUC in the external-testing cohort. CONCLUSION: AI using SVM classifier showed promising results in predicting THA infection based on MRI features. This model might support radiologists in identifying THA infection. |
---|