Cargando…
Energy-based analog neural network framework
Over the past decade a body of work has emerged and shown the disruptive potential of neuromorphic systems across a broad range of studies, often combining novel machine learning models and nanotechnologies. Still, the scope of investigations often remains limited to simple problems since the proces...
Autores principales: | Watfa, Mohamed, Garcia-Ortiz, Alberto, Sassatelli, Gilles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020340/ https://www.ncbi.nlm.nih.gov/pubmed/36936192 http://dx.doi.org/10.3389/fncom.2023.1114651 |
Ejemplares similares
-
Configurable analog-digital conversion using the neural engineering framework
por: Mayr, Christian G., et al.
Publicado: (2014) -
In situ Parallel Training of Analog Neural Network Using Electrochemical Random-Access Memory
por: Li, Yiyang, et al.
Publicado: (2021) -
Neuromorphic Analog Implementation of Neural Engineering Framework-Inspired Spiking Neuron for High-Dimensional Representation
por: Hazan, Avi, et al.
Publicado: (2021) -
Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices
por: Spoon, Katie, et al.
Publicado: (2021) -
Multisensory Concept Learning Framework Based on Spiking Neural Networks
por: Wang, Yuwei, et al.
Publicado: (2022)