Cargando…

Heterostrain and temperature-tuned twist between graphene/h-BN bilayers

Two-dimensional materials stacked atomically at small twist angles enable the modification of electronic states, motivating twistronics. Here, we demonstrate that heterostrain can rotate the graphene flake on monolayer h-BN within a few degrees (− 4° to 4°), and the twist angle stabilizes at specifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xing, Zhang, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020467/
https://www.ncbi.nlm.nih.gov/pubmed/36928342
http://dx.doi.org/10.1038/s41598-023-31233-3
Descripción
Sumario:Two-dimensional materials stacked atomically at small twist angles enable the modification of electronic states, motivating twistronics. Here, we demonstrate that heterostrain can rotate the graphene flake on monolayer h-BN within a few degrees (− 4° to 4°), and the twist angle stabilizes at specific values with applied constant strains, while the temperature effect is negligible in 100–900 K. The band gaps of bilayers can be modulated from ~ 0 to 37 meV at proper heterostrain and twist angles. Further analysis shows that the heterostrain modulates the interlayer energy landscape by regulating Moiré pattern evolution. The energy variation is correlated with the dynamic instability of different stacking modes of bilayers, and arises from the fluctuation of interlayer repulsive interaction associated with p-orbit electrons. Our results provide a mechanical strategy to manipulate twist angles of graphene/h-BN bilayers, and may facilitate the design of rotatable electronic nanodevices.