Cargando…
ImmuneScore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer
BACKGROUND: Endometrial cancer (EC) is a common gynecological cancer worldwide and the sixth most common female malignant tumor. A large number of studies conducted through database mining have identified many biomarkers that may be related to survival and prognosis. However, the predictive ability...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020521/ https://www.ncbi.nlm.nih.gov/pubmed/36937436 http://dx.doi.org/10.3389/fonc.2023.1097015 |
_version_ | 1784908276048068608 |
---|---|
author | Gu, Jiahui Wang, Zihao Wang, B. O. Ma, Xiaoxin |
author_facet | Gu, Jiahui Wang, Zihao Wang, B. O. Ma, Xiaoxin |
author_sort | Gu, Jiahui |
collection | PubMed |
description | BACKGROUND: Endometrial cancer (EC) is a common gynecological cancer worldwide and the sixth most common female malignant tumor. A large number of studies conducted through database mining have identified many biomarkers that may be related to survival and prognosis. However, the predictive ability of single-gene biomarkers is not sufficiently accurate. In recent years, tumors have been shown to interact closely with their microenvironment, and tumor-infiltrating immune cells in the tumor microenvironment were associated with therapeutic effects. Furthermore, sequencing technology has evolved and allowed the identification of genetic signatures that may improve prediction results. The purpose of this research was to discover the Cancer Genome Atlas (TCGA) data to evaluate new genetic features that can predict the prognosis of EC. METHODS: mRNA expression profiling was analyzed in patients with EC identified in the TCGA database (n = 530). Differentially expressed genes at different stages of EC were screened using the immune cell enrichment score (ImmuneScore). Univariate and multivariate Cox regression analyses was applied to evaluate genes significantly related to overall survival and establish the prognostic risk parameter formula. Kaplan–Meier survival curves and the logarithmic rank method were applied to verify the importance of risk parameters for the prognostic forecast. The accuracy of survival prediction was confirmed using the nomogram and Receiver Operating Characteristic (ROC) curve analysis. The mRNA expression of eight genes were measured by qRT-PCR. According to COX and HR values, NBAT1, a representative gene among 8 genes, was selected for CCK-8 assay, colony formation assay and transwell invasion assay to verify the effect on survival. RESULTS: Eight related genes (NBAT1, GFRA4, PTPRT, DLX4, RANBP3L, UNQ6494, KLRB1, and PRAC1) were discovered to be significantly associated with the overall survival rate. According to these eight-gene signatures, 530 patients with EC were assigned to high- and low-risk subgroups. The prognostic capability of the eight-gene signature was not influenced by other elements. CONCLUSIONS: Eight related gene markers were identified using ImmuneScore, which could predict prognosis and survival in patients with EC. These findings provide a basis for understanding the application of biological information in tumors and identifying the poor prognosis of EC. |
format | Online Article Text |
id | pubmed-10020521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100205212023-03-18 ImmuneScore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer Gu, Jiahui Wang, Zihao Wang, B. O. Ma, Xiaoxin Front Oncol Oncology BACKGROUND: Endometrial cancer (EC) is a common gynecological cancer worldwide and the sixth most common female malignant tumor. A large number of studies conducted through database mining have identified many biomarkers that may be related to survival and prognosis. However, the predictive ability of single-gene biomarkers is not sufficiently accurate. In recent years, tumors have been shown to interact closely with their microenvironment, and tumor-infiltrating immune cells in the tumor microenvironment were associated with therapeutic effects. Furthermore, sequencing technology has evolved and allowed the identification of genetic signatures that may improve prediction results. The purpose of this research was to discover the Cancer Genome Atlas (TCGA) data to evaluate new genetic features that can predict the prognosis of EC. METHODS: mRNA expression profiling was analyzed in patients with EC identified in the TCGA database (n = 530). Differentially expressed genes at different stages of EC were screened using the immune cell enrichment score (ImmuneScore). Univariate and multivariate Cox regression analyses was applied to evaluate genes significantly related to overall survival and establish the prognostic risk parameter formula. Kaplan–Meier survival curves and the logarithmic rank method were applied to verify the importance of risk parameters for the prognostic forecast. The accuracy of survival prediction was confirmed using the nomogram and Receiver Operating Characteristic (ROC) curve analysis. The mRNA expression of eight genes were measured by qRT-PCR. According to COX and HR values, NBAT1, a representative gene among 8 genes, was selected for CCK-8 assay, colony formation assay and transwell invasion assay to verify the effect on survival. RESULTS: Eight related genes (NBAT1, GFRA4, PTPRT, DLX4, RANBP3L, UNQ6494, KLRB1, and PRAC1) were discovered to be significantly associated with the overall survival rate. According to these eight-gene signatures, 530 patients with EC were assigned to high- and low-risk subgroups. The prognostic capability of the eight-gene signature was not influenced by other elements. CONCLUSIONS: Eight related gene markers were identified using ImmuneScore, which could predict prognosis and survival in patients with EC. These findings provide a basis for understanding the application of biological information in tumors and identifying the poor prognosis of EC. Frontiers Media S.A. 2023-03-03 /pmc/articles/PMC10020521/ /pubmed/36937436 http://dx.doi.org/10.3389/fonc.2023.1097015 Text en Copyright © 2023 Gu, Wang, Wang and Ma https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Gu, Jiahui Wang, Zihao Wang, B. O. Ma, Xiaoxin ImmuneScore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer |
title | ImmuneScore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer |
title_full | ImmuneScore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer |
title_fullStr | ImmuneScore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer |
title_full_unstemmed | ImmuneScore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer |
title_short | ImmuneScore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer |
title_sort | immunescore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020521/ https://www.ncbi.nlm.nih.gov/pubmed/36937436 http://dx.doi.org/10.3389/fonc.2023.1097015 |
work_keys_str_mv | AT gujiahui immunescoreofeightgenesignaturepredictsprognosisandsurvivalinpatientswithendometrialcancer AT wangzihao immunescoreofeightgenesignaturepredictsprognosisandsurvivalinpatientswithendometrialcancer AT wangbo immunescoreofeightgenesignaturepredictsprognosisandsurvivalinpatientswithendometrialcancer AT maxiaoxin immunescoreofeightgenesignaturepredictsprognosisandsurvivalinpatientswithendometrialcancer |