Cargando…
Rotation and transportation of liquid crystal droplets for visualizing electric properties of microstructured electrodes
The spatial resolution of typical sensor probes is sufficient for measuring the average electric properties of microelectrical devices, but they are unable to measure the distribution with a spatial precision. Liquid crystal droplets (LCDs) are promising candidate for visualizing the distribution. W...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020540/ https://www.ncbi.nlm.nih.gov/pubmed/36927766 http://dx.doi.org/10.1038/s41598-023-31026-8 |
Sumario: | The spatial resolution of typical sensor probes is sufficient for measuring the average electric properties of microelectrical devices, but they are unable to measure the distribution with a spatial precision. Liquid crystal droplets (LCDs) are promising candidate for visualizing the distribution. When voltage is applied, the LCDs show rotational and translational behaviors which depend on the location of LCDs within the devices. We demonstrate that by comparing the experimental and numerical results, the electric field and electrostatic energy distribution are visualized by rotating and transporting LCDs, with a spatial resolution of 10 µm and a detection accuracy of 5 µV/µm. In addition, we produced an array of LCDs by designing periodic modulation of the electrostatic energy density in the model device. These findings show that the LCDs serve as a periodic modulator of the refractive index as well as a sensor for the observation of electric properties of microelectrical devices. |
---|