Cargando…
A simplified model to estimate nonlinear turbulent transport by linear dynamics in plasma turbulence
A simplified model to estimate nonlinear turbulent transport only by linear calculations is proposed, where the turbulent heat diffusivity in tokamak ion temperature gradient(ITG) driven turbulence is reproduced for a wide parameter range including near- and far-marginal ITG stability. The optimal n...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020550/ https://www.ncbi.nlm.nih.gov/pubmed/36928442 http://dx.doi.org/10.1038/s41598-023-29168-w |
Sumario: | A simplified model to estimate nonlinear turbulent transport only by linear calculations is proposed, where the turbulent heat diffusivity in tokamak ion temperature gradient(ITG) driven turbulence is reproduced for a wide parameter range including near- and far-marginal ITG stability. The optimal nonlinear functional relation(NFR) between the turbulent diffusivity, the turbulence intensity [Formula: see text] , and the zonal-flow intensity [Formula: see text] is determined by means of mathematical optimization methods. Then, an extended modeling for [Formula: see text] and [Formula: see text] to incorporate the turbulence suppression effects and the temperature gradient dependence is carried out. The simplified transport model is expressed as a modified nonlinear function composed of the linear growth rate and the linear zonal-flow decay time. Good accuracy and wide applicability of the model are demonstrated, where the regression error of [Formula: see text] indicates improvement by a factor of about 1/4 in comparison to that in the previous works. |
---|