Cargando…
Domain adaptation for supervised integration of scRNA-seq data
Large-scale scRNA-seq studies typically generate data in batches, which often induce nontrivial batch effects that need to be corrected. Given the global efforts for building cell atlases and the increasing number of annotated scRNA-seq datasets accumulated, we propose a supervised strategy for scRN...
Autores principales: | Sun, Yutong, Qiu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020569/ https://www.ncbi.nlm.nih.gov/pubmed/36928806 http://dx.doi.org/10.1038/s42003-023-04668-7 |
Ejemplares similares
-
Contrastive self-supervised clustering of scRNA-seq data
por: Ciortan, Madalina, et al.
Publicado: (2021) -
scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data
por: Zeng, Pengcheng, et al.
Publicado: (2022) -
Computational approaches for interpreting scRNA‐seq data
por: Rostom, Raghd, et al.
Publicado: (2017) -
Cerebro: interactive visualization of scRNA-seq data
por: Hillje, Roman, et al.
Publicado: (2020) -
scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning
por: Jia, Shangru, et al.
Publicado: (2023)