Cargando…
Trainable quantization for Speedy Spiking Neural Networks
Spiking neural networks are considered as the third generation of Artificial Neural Networks. SNNs perform computation using neurons and synapses that communicate using binary and asynchronous signals known as spikes. They have attracted significant research interest over the last years since their...
Autores principales: | Castagnetti, Andrea, Pegatoquet, Alain, Miramond, Benoît |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020579/ https://www.ncbi.nlm.nih.gov/pubmed/36937675 http://dx.doi.org/10.3389/fnins.2023.1154241 |
Ejemplares similares
-
SPIDEN: deep Spiking Neural Networks for efficient image denoising
por: Castagnetti, Andrea, et al.
Publicado: (2023) -
Quantization and Deployment of Deep Neural Networks on Microcontrollers
por: Novac, Pierre-Emmanuel, et al.
Publicado: (2021) -
Unsupervised Anomaly Detection for Cars CAN Sensors Time Series Using Small Recurrent and Convolutional Neural Networks
por: Cherdo, Yann, et al.
Publicado: (2023) -
Quantization Framework for Fast Spiking Neural Networks
por: Li, Chen, et al.
Publicado: (2022) -
Less Is More: Adaptive Trainable Gradient Dropout for Deep Neural Networks
por: Avgerinos, Christos, et al.
Publicado: (2023)