Cargando…
Simultaneous removal of nitrogen and arsenite by heterotrophic nitrification and aerobic denitrification bacterium Hydrogenophaga sp. H7
INTRODUCTION: Nitrogen and arsenic contaminants often coexist in groundwater, and microbes show the potential for simultaneous removal of nitrogen and arsenic. Here, we reported that Hydrogenophaga sp. H7 was heterotrophic nitrification and aerobic denitrification (HNAD) and arsenite [As(III)] oxida...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020585/ https://www.ncbi.nlm.nih.gov/pubmed/36938130 http://dx.doi.org/10.3389/fmicb.2022.1103913 |
_version_ | 1784908291748397056 |
---|---|
author | Fan, Xia Nie, Li Chen, Zhengjun Zheng, Yongliang Wang, Gejiao Shi, Kaixiang |
author_facet | Fan, Xia Nie, Li Chen, Zhengjun Zheng, Yongliang Wang, Gejiao Shi, Kaixiang |
author_sort | Fan, Xia |
collection | PubMed |
description | INTRODUCTION: Nitrogen and arsenic contaminants often coexist in groundwater, and microbes show the potential for simultaneous removal of nitrogen and arsenic. Here, we reported that Hydrogenophaga sp. H7 was heterotrophic nitrification and aerobic denitrification (HNAD) and arsenite [As(III)] oxidation bacterium. METHODS: The appearance of nitrogen removal and As(III) oxidation of Hydrogenophaga sp. H7 in liquid culture medium was studied. The effect of carbon source, C/N ratio, temperature, pH values, and shaking speeds were analyzed. The impact of strains H7 treatment with FeCl3 on nitrogen and As(III) in wastewater was assessed. The key pathways that participate in simultaneous nitrogen removal and As(III) oxidation was analyzed by genome and proteomic analysis. RESULTS AND DISCUSSION: Strain H7 presented efficient capacities for simultaneous NH(4)(+)-N, NO(3)(−)-N, or NO(2)(−)-N removal with As(III) oxidation during aerobic cultivation. Strikingly, the bacterial ability to remove nitrogen and oxidize As(III) has remained high across a wide range of pH values, and shaking speeds, exceeding that of the most commonly reported HNAD bacteria. Additionally, the previous HNAD strains exhibited a high denitrification efficiency, but a suboptimal concentration of nitrogen remained in the wastewater. Here, strain H7 combined with FeCl3 efficiently removed 96.14% of NH(4)(+)-N, 99.08% of NO(3)(−)-N, and 94.68% of total nitrogen (TN), and it oxidized 100% of As(III), even at a low nitrogen concentration (35 mg/L). The residues in the wastewater still met the V of Surface Water Environmental Quality Standard of China after five continuous wastewater treatment cycles. Furthermore, genome and proteomic analyses led us to propose that the shortcut nitrification-denitrification pathway and As(III) oxidase AioBA are the key pathways that participate in simultaneous nitrogen removal and As(III) oxidation. |
format | Online Article Text |
id | pubmed-10020585 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100205852023-03-18 Simultaneous removal of nitrogen and arsenite by heterotrophic nitrification and aerobic denitrification bacterium Hydrogenophaga sp. H7 Fan, Xia Nie, Li Chen, Zhengjun Zheng, Yongliang Wang, Gejiao Shi, Kaixiang Front Microbiol Microbiology INTRODUCTION: Nitrogen and arsenic contaminants often coexist in groundwater, and microbes show the potential for simultaneous removal of nitrogen and arsenic. Here, we reported that Hydrogenophaga sp. H7 was heterotrophic nitrification and aerobic denitrification (HNAD) and arsenite [As(III)] oxidation bacterium. METHODS: The appearance of nitrogen removal and As(III) oxidation of Hydrogenophaga sp. H7 in liquid culture medium was studied. The effect of carbon source, C/N ratio, temperature, pH values, and shaking speeds were analyzed. The impact of strains H7 treatment with FeCl3 on nitrogen and As(III) in wastewater was assessed. The key pathways that participate in simultaneous nitrogen removal and As(III) oxidation was analyzed by genome and proteomic analysis. RESULTS AND DISCUSSION: Strain H7 presented efficient capacities for simultaneous NH(4)(+)-N, NO(3)(−)-N, or NO(2)(−)-N removal with As(III) oxidation during aerobic cultivation. Strikingly, the bacterial ability to remove nitrogen and oxidize As(III) has remained high across a wide range of pH values, and shaking speeds, exceeding that of the most commonly reported HNAD bacteria. Additionally, the previous HNAD strains exhibited a high denitrification efficiency, but a suboptimal concentration of nitrogen remained in the wastewater. Here, strain H7 combined with FeCl3 efficiently removed 96.14% of NH(4)(+)-N, 99.08% of NO(3)(−)-N, and 94.68% of total nitrogen (TN), and it oxidized 100% of As(III), even at a low nitrogen concentration (35 mg/L). The residues in the wastewater still met the V of Surface Water Environmental Quality Standard of China after five continuous wastewater treatment cycles. Furthermore, genome and proteomic analyses led us to propose that the shortcut nitrification-denitrification pathway and As(III) oxidase AioBA are the key pathways that participate in simultaneous nitrogen removal and As(III) oxidation. Frontiers Media S.A. 2023-03-03 /pmc/articles/PMC10020585/ /pubmed/36938130 http://dx.doi.org/10.3389/fmicb.2022.1103913 Text en Copyright © 2023 Fan, Nie, Chen, Zheng, Wang and Shi. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Fan, Xia Nie, Li Chen, Zhengjun Zheng, Yongliang Wang, Gejiao Shi, Kaixiang Simultaneous removal of nitrogen and arsenite by heterotrophic nitrification and aerobic denitrification bacterium Hydrogenophaga sp. H7 |
title | Simultaneous removal of nitrogen and arsenite by heterotrophic nitrification and aerobic denitrification bacterium Hydrogenophaga sp. H7 |
title_full | Simultaneous removal of nitrogen and arsenite by heterotrophic nitrification and aerobic denitrification bacterium Hydrogenophaga sp. H7 |
title_fullStr | Simultaneous removal of nitrogen and arsenite by heterotrophic nitrification and aerobic denitrification bacterium Hydrogenophaga sp. H7 |
title_full_unstemmed | Simultaneous removal of nitrogen and arsenite by heterotrophic nitrification and aerobic denitrification bacterium Hydrogenophaga sp. H7 |
title_short | Simultaneous removal of nitrogen and arsenite by heterotrophic nitrification and aerobic denitrification bacterium Hydrogenophaga sp. H7 |
title_sort | simultaneous removal of nitrogen and arsenite by heterotrophic nitrification and aerobic denitrification bacterium hydrogenophaga sp. h7 |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020585/ https://www.ncbi.nlm.nih.gov/pubmed/36938130 http://dx.doi.org/10.3389/fmicb.2022.1103913 |
work_keys_str_mv | AT fanxia simultaneousremovalofnitrogenandarsenitebyheterotrophicnitrificationandaerobicdenitrificationbacteriumhydrogenophagasph7 AT nieli simultaneousremovalofnitrogenandarsenitebyheterotrophicnitrificationandaerobicdenitrificationbacteriumhydrogenophagasph7 AT chenzhengjun simultaneousremovalofnitrogenandarsenitebyheterotrophicnitrificationandaerobicdenitrificationbacteriumhydrogenophagasph7 AT zhengyongliang simultaneousremovalofnitrogenandarsenitebyheterotrophicnitrificationandaerobicdenitrificationbacteriumhydrogenophagasph7 AT wanggejiao simultaneousremovalofnitrogenandarsenitebyheterotrophicnitrificationandaerobicdenitrificationbacteriumhydrogenophagasph7 AT shikaixiang simultaneousremovalofnitrogenandarsenitebyheterotrophicnitrificationandaerobicdenitrificationbacteriumhydrogenophagasph7 |