Cargando…
Feasibility of a deep-learning based anatomical region labeling tool for Cone-Beam Computed Tomography scans in radiotherapy
BACKGROUND AND PURPOSE: Currently, there is no robust indicator within the Cone-Beam Computed Tomography (CBCT) DICOM headers as to which anatomical region is present on the scan. This can be a predicament to CBCT-based algorithms trained on specific body regions, such as auto-segmentation and radio...
Autores principales: | Luximon, Dishane C, Neylon, John, Lamb, James M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020677/ https://www.ncbi.nlm.nih.gov/pubmed/36937493 http://dx.doi.org/10.1016/j.phro.2023.100427 |
Ejemplares similares
-
Proof‐of‐concept study of artificial intelligence‐assisted review of CBCT image guidance
por: Neylon, Jack, et al.
Publicado: (2023) -
Feasibility of using calibrated cone-beam computed tomography scans to validate the heart dose in left breast post-mastectomy radiotherapy
por: Tang, Bin, et al.
Publicado: (2020) -
Correlations between anatomical variations of the nasal cavity and ethmoidal sinuses on cone-beam computed tomography scans
por: Shokri, Abbas, et al.
Publicado: (2019) -
Fusion of intra-oral scans in cone-beam computed tomography scans
por: Baan, F., et al.
Publicado: (2020) -
Lingual Foramen of the Mandible on Cone-Beam Computed Tomography Scans: A Study of Anatomical Variations in an Iranian Population
por: Moshfeghi, Mahkameh, et al.
Publicado: (2021)