Cargando…
Modelling blood flow in patients with heart valve disease using deep learning: A computationally efficient method to expand diagnostic capabilities in clinical routine
INTRODUCTION: The computational modelling of blood flow is known to provide vital hemodynamic parameters for diagnosis and treatment-support for patients with valvular heart disease. However, most diagnosis/treatment-support solutions based on flow modelling proposed utilize time- and resource-inten...
Autores principales: | Yevtushenko, Pavlo, Goubergrits, Leonid, Franke, Benedikt, Kuehne, Titus, Schafstedde, Marie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020717/ https://www.ncbi.nlm.nih.gov/pubmed/36937926 http://dx.doi.org/10.3389/fcvm.2023.1136935 |
Ejemplares similares
-
Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis
por: Franke, Benedikt, et al.
Publicado: (2021) -
In-silico enhanced animal study of pulmonary artery pressure sensors: assessing hemodynamics using computational fluid dynamics
por: Brüning, Jan, et al.
Publicado: (2023) -
Hemodynamic Modeling of Biological Aortic Valve Replacement Using Preoperative Data Only
por: Hellmeier, Florian, et al.
Publicado: (2021) -
CARDIOKIN1: Computational Assessment of Myocardial Metabolic Capability in Healthy Controls and Patients With Valve Diseases
por: Berndt, Nikolaus, et al.
Publicado: (2021) -
Virtual treatment planning in three patients with univentricular physiology using computational fluid dynamics—Pitfalls and strategies
por: Schafstedde, Marie, et al.
Publicado: (2022)