Cargando…
Recalibration of a Deep Learning Model for Low-Dose Computed Tomographic Images to Inform Lung Cancer Screening Intervals
IMPORTANCE: Annual low-dose computed tomographic (LDCT) screening reduces lung cancer mortality, but harms could be reduced and cost-effectiveness improved by reusing the LDCT image in conjunction with deep learning or statistical models to identify low-risk individuals for biennial screening. OBJEC...
Autores principales: | Landy, Rebecca, Wang, Vivian L., Baldwin, David R., Pinsky, Paul F., Cheung, Li C., Castle, Philip E., Skarzynski, Martin, Robbins, Hilary A., Katki, Hormuzd A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020880/ https://www.ncbi.nlm.nih.gov/pubmed/36929398 http://dx.doi.org/10.1001/jamanetworkopen.2023.3273 |
Ejemplares similares
-
Methods for Using Race and Ethnicity in Prediction Models for Lung Cancer Screening Eligibility
por: Landy, Rebecca, et al.
Publicado: (2023) -
Variation in Human Papillomavirus Vaccination Effectiveness in the US by Age at Vaccination
por: Egemen, Didem, et al.
Publicado: (2022) -
RIG: Recalibration and Interrelation of Genomic Sequence Data with the GATK
por: McCormick, Ryan F., et al.
Publicado: (2015) -
Incorporating medical interventions into carrier probability estimation for genetic counseling
por: Katki, Hormuzd A
Publicado: (2007) -
Absolute risks of cervical precancer among women who fulfill exiting guidelines based on HPV and cytology cotesting
por: Landy, Rebecca, et al.
Publicado: (2019)