Cargando…
Unassisted Clinicians Versus Deep Learning–Assisted Clinicians in Image-Based Cancer Diagnostics: Systematic Review With Meta-analysis
BACKGROUND: A number of publications have demonstrated that deep learning (DL) algorithms matched or outperformed clinicians in image-based cancer diagnostics, but these algorithms are frequently considered as opponents rather than partners. Despite the clinicians-in-the-loop DL approach having grea...
Autores principales: | Xue, Peng, Si, Mingyu, Qin, Dongxu, Wei, Bingrui, Seery, Samuel, Ye, Zichen, Chen, Mingyang, Wang, Sumeng, Song, Cheng, Zhang, Bo, Ding, Ming, Zhang, Wenling, Bai, Anying, Yan, Huijiao, Dang, Le, Zhao, Yuqian, Rezhake, Remila, Zhang, Shaokai, Qiao, Youlin, Qu, Yimin, Jiang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020907/ https://www.ncbi.nlm.nih.gov/pubmed/36862499 http://dx.doi.org/10.2196/43832 |
Ejemplares similares
-
Correction: Unassisted Clinicians Versus Deep Learning–Assisted Clinicians in Image-Based Cancer Diagnostics: Systematic Review With Meta-analysis
por: Xue, Peng, et al.
Publicado: (2023) -
Deep learning in image-based breast and cervical cancer detection: a systematic review and meta-analysis
por: Xue, Peng, et al.
Publicado: (2022) -
Artificial intelligence in colposcopic examination: A promising tool to assist junior colposcopists
por: Wu, Aiyuan, et al.
Publicado: (2023) -
Developing a predictive nomogram for colposcopists: a retrospective, multicenter study of cervical precancer identification in China
por: Xue, Peng, et al.
Publicado: (2023) -
Endocervical curettage for diagnosing high-grade squamous intraepithelial lesions or worse in women with type 3 transformation zone lesions: a retrospective, observational study
por: Wei, Bingrui, et al.
Publicado: (2023)