Cargando…
AxoNet 2.0: A Deep Learning-Based Tool for Morphometric Analysis of Retinal Ganglion Cell Axons
PURPOSE: Assessment of glaucomatous damage in animal models is facilitated by rapid and accurate quantification of retinal ganglion cell (RGC) axonal loss and morphologic change. However, manual assessment is extremely time- and labor-intensive. Here, we developed AxoNet 2.0, an automated deep learn...
Autores principales: | Goyal, Vidisha, Read, A. Thomas, Ritch, Matthew D., Hannon, Bailey G., Rodriguez, Gabriela Sanchez, Brown, Dillon M., Feola, Andrew J., Hedberg-Buenz, Adam, Cull, Grant A., Reynaud, Juan, Garvin, Mona K., Anderson, Michael G., Burgoyne, Claude F., Ethier, C. Ross |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020950/ https://www.ncbi.nlm.nih.gov/pubmed/36917117 http://dx.doi.org/10.1167/tvst.12.3.9 |
Ejemplares similares
-
AxoNet: A deep learning-based tool to count retinal ganglion cell axons
por: Ritch, Matthew D., et al.
Publicado: (2020) -
Morphometric Analysis of Retinal Ganglion Cell Axons in Normal and Glaucomatous Brown Norway Rats Optic Nerves
por: Goyal, Vidisha, et al.
Publicado: (2023) -
Editorial: Deep learning with limited labeled data for vision, audio, and text
por: Orescanin, Marko, et al.
Publicado: (2023) -
A review of generative adversarial network applications in optical coherence tomography image analysis
por: Kugelman, Jason, et al.
Publicado: (2022) -
Synthetic OCT Data Generation to Enhance the Performance of Diagnostic Models for Neurodegenerative Diseases
por: Danesh, Hajar, et al.
Publicado: (2022)