Cargando…
spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data
Since many single-cell RNA-seq (scRNA-seq) data are obtained after cell sorting, such as when investigating immune cells, tracking cellular landscape by integrating single-cell data with spatial transcriptomic data is limited due to cell type and cell composition mismatch between the two datasets. W...
Autores principales: | Bae, Sungwoo, Choi, Hongyoon, Lee, Dong Soo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10021938/ https://www.ncbi.nlm.nih.gov/pubmed/36932388 http://dx.doi.org/10.1186/s13073-023-01168-5 |
Ejemplares similares
-
CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data
por: Bae, Sungwoo, et al.
Publicado: (2022) -
Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images
por: Bae, Sungwoo, et al.
Publicado: (2021) -
scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
por: Zhang, Ziqi, et al.
Publicado: (2022) -
CellRegMap: a statistical framework for mapping context‐specific regulatory variants using scRNA‐seq
por: Cuomo, Anna S E, et al.
Publicado: (2022) -
Mapping nucleosome positions using DNase-seq
por: Zhong, Jianling, et al.
Publicado: (2016)