Cargando…
Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic hit almost all cities in Brazil in early 2020 and lasted for several months. Despite the effort of local state and municipal governments, an inhomogeneous nationwide response resulted in a death toll amongst the highest record...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10021960/ https://www.ncbi.nlm.nih.gov/pubmed/36962551 http://dx.doi.org/10.1371/journal.pgph.0000540 |
_version_ | 1784908621676544000 |
---|---|
author | Lopes, Paulo Henrique Wellacott, Liam de Almeida, Leandro Villavicencio, Lourdes Milagros Mendoza Moreira, André Luiz de Lucena Andrade, Dhiego Souto Souza, Alyson Matheus de Carvalho de Sousa, Rislene Katia Ramos Silva, Priscila de Souza Lima, Luciana Lones, Michael do Nascimento, José-Dias Vargas, Patricia A. Moioli, Renan Cipriano Blanco Figuerola, Wilfredo Rennó-Costa, César |
author_facet | Lopes, Paulo Henrique Wellacott, Liam de Almeida, Leandro Villavicencio, Lourdes Milagros Mendoza Moreira, André Luiz de Lucena Andrade, Dhiego Souto Souza, Alyson Matheus de Carvalho de Sousa, Rislene Katia Ramos Silva, Priscila de Souza Lima, Luciana Lones, Michael do Nascimento, José-Dias Vargas, Patricia A. Moioli, Renan Cipriano Blanco Figuerola, Wilfredo Rennó-Costa, César |
author_sort | Lopes, Paulo Henrique |
collection | PubMed |
description | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic hit almost all cities in Brazil in early 2020 and lasted for several months. Despite the effort of local state and municipal governments, an inhomogeneous nationwide response resulted in a death toll amongst the highest recorded globally. To evaluate the impact of the nonpharmaceutical governmental interventions applied by different cities—such as the closure of schools and businesses in general—in the evolution and epidemic spread of SARS-CoV-2, we constructed a full-sized agent-based epidemiological model adjusted to the singularities of particular cities. The model incorporates detailed demographic information, mobility networks segregated by economic segments, and restricting bills enacted during the pandemic period. As a case study, we analyzed the early response of the City of Natal—a midsized state capital—to the pandemic. Although our results indicate that the government response could be improved, the restrictive mobility acts saved many lives. The simulations show that a detailed analysis of alternative scenarios can inform policymakers about the most relevant measures for similar pandemic surges and help develop future response protocols. |
format | Online Article Text |
id | pubmed-10021960 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-100219602023-03-17 Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal Lopes, Paulo Henrique Wellacott, Liam de Almeida, Leandro Villavicencio, Lourdes Milagros Mendoza Moreira, André Luiz de Lucena Andrade, Dhiego Souto Souza, Alyson Matheus de Carvalho de Sousa, Rislene Katia Ramos Silva, Priscila de Souza Lima, Luciana Lones, Michael do Nascimento, José-Dias Vargas, Patricia A. Moioli, Renan Cipriano Blanco Figuerola, Wilfredo Rennó-Costa, César PLOS Glob Public Health Research Article The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic hit almost all cities in Brazil in early 2020 and lasted for several months. Despite the effort of local state and municipal governments, an inhomogeneous nationwide response resulted in a death toll amongst the highest recorded globally. To evaluate the impact of the nonpharmaceutical governmental interventions applied by different cities—such as the closure of schools and businesses in general—in the evolution and epidemic spread of SARS-CoV-2, we constructed a full-sized agent-based epidemiological model adjusted to the singularities of particular cities. The model incorporates detailed demographic information, mobility networks segregated by economic segments, and restricting bills enacted during the pandemic period. As a case study, we analyzed the early response of the City of Natal—a midsized state capital—to the pandemic. Although our results indicate that the government response could be improved, the restrictive mobility acts saved many lives. The simulations show that a detailed analysis of alternative scenarios can inform policymakers about the most relevant measures for similar pandemic surges and help develop future response protocols. Public Library of Science 2022-10-14 /pmc/articles/PMC10021960/ /pubmed/36962551 http://dx.doi.org/10.1371/journal.pgph.0000540 Text en © 2022 Lopes et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lopes, Paulo Henrique Wellacott, Liam de Almeida, Leandro Villavicencio, Lourdes Milagros Mendoza Moreira, André Luiz de Lucena Andrade, Dhiego Souto Souza, Alyson Matheus de Carvalho de Sousa, Rislene Katia Ramos Silva, Priscila de Souza Lima, Luciana Lones, Michael do Nascimento, José-Dias Vargas, Patricia A. Moioli, Renan Cipriano Blanco Figuerola, Wilfredo Rennó-Costa, César Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal |
title | Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal |
title_full | Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal |
title_fullStr | Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal |
title_full_unstemmed | Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal |
title_short | Measuring the impact of nonpharmaceutical interventions on the SARS-CoV-2 pandemic at a city level: An agent-based computational modelling study of the City of Natal |
title_sort | measuring the impact of nonpharmaceutical interventions on the sars-cov-2 pandemic at a city level: an agent-based computational modelling study of the city of natal |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10021960/ https://www.ncbi.nlm.nih.gov/pubmed/36962551 http://dx.doi.org/10.1371/journal.pgph.0000540 |
work_keys_str_mv | AT lopespaulohenrique measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT wellacottliam measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT dealmeidaleandro measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT villavicenciolourdesmilagrosmendoza measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT moreiraandreluizdelucena measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT andradedhiegosouto measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT souzaalysonmatheusdecarvalho measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT desousarislenekatiaramos measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT silvaprisciladesouza measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT limaluciana measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT lonesmichael measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT donascimentojosedias measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT vargaspatriciaa measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT moiolirenancipriano measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT blancofiguerolawilfredo measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal AT rennocostacesar measuringtheimpactofnonpharmaceuticalinterventionsonthesarscov2pandemicatacitylevelanagentbasedcomputationalmodellingstudyofthecityofnatal |