Cargando…

Low-cost membrane from polyethylene terephthalate bottle waste for water purification and chromium removal: modification and application

River water has become contaminated with numerous hazardous compounds due to the rapid rise in population and industry expansion. Due to unchecked population growth and the improper disposal of electroplating industrial waste, issues with river water filtration and the elimination of chromium contam...

Descripción completa

Detalles Bibliográficos
Autores principales: Ali, Badrut Tamam Ibnu, Kusumawati, Yuly, Jaafar, Juhana, Sulistiono, Dety Oktavia, Widiastuti, Nurul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022489/
https://www.ncbi.nlm.nih.gov/pubmed/36936853
http://dx.doi.org/10.1039/d3ra00827d
_version_ 1784908741202673664
author Ali, Badrut Tamam Ibnu
Kusumawati, Yuly
Jaafar, Juhana
Sulistiono, Dety Oktavia
Widiastuti, Nurul
author_facet Ali, Badrut Tamam Ibnu
Kusumawati, Yuly
Jaafar, Juhana
Sulistiono, Dety Oktavia
Widiastuti, Nurul
author_sort Ali, Badrut Tamam Ibnu
collection PubMed
description River water has become contaminated with numerous hazardous compounds due to the rapid rise in population and industry expansion. Due to unchecked population growth and the improper disposal of electroplating industrial waste, issues with river water filtration and the elimination of chromium contamination have developed. Various technologies have been developed to overcome these problems. One of the technologies that have been proposed until now is membrane technology. On the other hand, the waste from plastic bottles, which grows yearly and now weighs 381.73 million tons, can create thin films or layers. Therefore, there is a lot of potential in employing plastic bottle trash as a low-cost, sustainable, and eco-friendly membrane material. In this study, the immersion-precipitation phase inversion method was used in the membrane preparation process from plastic bottle waste by modifying fillers (zeolite-NaY) and additives (LiCl and PEG-400) to improve membrane performance. The effect of filler and additive modification on the fabricated membrane was studied for its performance in water purification and chromium ion contaminant removal. The results demonstrated that the modified LiCl membrane performed optimally for water purification and the removal of chromium ions, along with a reduction in turbidity to 1.42 NTU (from 400 NTU) and a 54.75% removal of chromium.
format Online
Article
Text
id pubmed-10022489
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-100224892023-03-18 Low-cost membrane from polyethylene terephthalate bottle waste for water purification and chromium removal: modification and application Ali, Badrut Tamam Ibnu Kusumawati, Yuly Jaafar, Juhana Sulistiono, Dety Oktavia Widiastuti, Nurul RSC Adv Chemistry River water has become contaminated with numerous hazardous compounds due to the rapid rise in population and industry expansion. Due to unchecked population growth and the improper disposal of electroplating industrial waste, issues with river water filtration and the elimination of chromium contamination have developed. Various technologies have been developed to overcome these problems. One of the technologies that have been proposed until now is membrane technology. On the other hand, the waste from plastic bottles, which grows yearly and now weighs 381.73 million tons, can create thin films or layers. Therefore, there is a lot of potential in employing plastic bottle trash as a low-cost, sustainable, and eco-friendly membrane material. In this study, the immersion-precipitation phase inversion method was used in the membrane preparation process from plastic bottle waste by modifying fillers (zeolite-NaY) and additives (LiCl and PEG-400) to improve membrane performance. The effect of filler and additive modification on the fabricated membrane was studied for its performance in water purification and chromium ion contaminant removal. The results demonstrated that the modified LiCl membrane performed optimally for water purification and the removal of chromium ions, along with a reduction in turbidity to 1.42 NTU (from 400 NTU) and a 54.75% removal of chromium. The Royal Society of Chemistry 2023-03-17 /pmc/articles/PMC10022489/ /pubmed/36936853 http://dx.doi.org/10.1039/d3ra00827d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Ali, Badrut Tamam Ibnu
Kusumawati, Yuly
Jaafar, Juhana
Sulistiono, Dety Oktavia
Widiastuti, Nurul
Low-cost membrane from polyethylene terephthalate bottle waste for water purification and chromium removal: modification and application
title Low-cost membrane from polyethylene terephthalate bottle waste for water purification and chromium removal: modification and application
title_full Low-cost membrane from polyethylene terephthalate bottle waste for water purification and chromium removal: modification and application
title_fullStr Low-cost membrane from polyethylene terephthalate bottle waste for water purification and chromium removal: modification and application
title_full_unstemmed Low-cost membrane from polyethylene terephthalate bottle waste for water purification and chromium removal: modification and application
title_short Low-cost membrane from polyethylene terephthalate bottle waste for water purification and chromium removal: modification and application
title_sort low-cost membrane from polyethylene terephthalate bottle waste for water purification and chromium removal: modification and application
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022489/
https://www.ncbi.nlm.nih.gov/pubmed/36936853
http://dx.doi.org/10.1039/d3ra00827d
work_keys_str_mv AT alibadruttamamibnu lowcostmembranefrompolyethyleneterephthalatebottlewasteforwaterpurificationandchromiumremovalmodificationandapplication
AT kusumawatiyuly lowcostmembranefrompolyethyleneterephthalatebottlewasteforwaterpurificationandchromiumremovalmodificationandapplication
AT jaafarjuhana lowcostmembranefrompolyethyleneterephthalatebottlewasteforwaterpurificationandchromiumremovalmodificationandapplication
AT sulistionodetyoktavia lowcostmembranefrompolyethyleneterephthalatebottlewasteforwaterpurificationandchromiumremovalmodificationandapplication
AT widiastutinurul lowcostmembranefrompolyethyleneterephthalatebottlewasteforwaterpurificationandchromiumremovalmodificationandapplication